Metamath Proof Explorer
Description: The value of the rising factorial at a successor. (Contributed by Scott
Fenton, 19-Mar-2018)
|
|
Ref |
Expression |
|
Hypotheses |
rffacp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
rffacp1d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
|
Assertion |
risefacp1d |
⊢ ( 𝜑 → ( 𝐴 RiseFac ( 𝑁 + 1 ) ) = ( ( 𝐴 RiseFac 𝑁 ) · ( 𝐴 + 𝑁 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rffacp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
rffacp1d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
risefacp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac ( 𝑁 + 1 ) ) = ( ( 𝐴 RiseFac 𝑁 ) · ( 𝐴 + 𝑁 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 RiseFac ( 𝑁 + 1 ) ) = ( ( 𝐴 RiseFac 𝑁 ) · ( 𝐴 + 𝑁 ) ) ) |