Step |
Hyp |
Ref |
Expression |
1 |
|
risefacval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑛 ) ) |
2 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℤ ) |
3 |
|
0zd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℤ ) |
4 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
5 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 1 ) ∈ ℤ ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
9 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℕ0 ) |
10 |
9
|
nn0cnd |
⊢ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℂ ) |
11 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝐴 + 𝑛 ) ∈ ℂ ) |
12 |
8 10 11
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 + 𝑛 ) ∈ ℂ ) |
13 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 − 1 ) → ( 𝐴 + 𝑛 ) = ( 𝐴 + ( 𝑘 − 1 ) ) ) |
14 |
2 3 7 12 13
|
fprodshft |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑛 ) = ∏ 𝑘 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( 𝐴 + ( 𝑘 − 1 ) ) ) |
15 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
16 |
15
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 + 1 ) = 1 ) |
17 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
18 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) |
19 |
17 18
|
npcand |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
21 |
16 20
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
22 |
21
|
prodeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( 𝐴 + ( 𝑘 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 + ( 𝑘 − 1 ) ) ) |
23 |
1 14 22
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 + ( 𝑘 − 1 ) ) ) |