Description: Two ways to say " A belongs to B ". (Contributed by NM, 22-Nov-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | risset | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) | |
3 | dfclel | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
4 | 1 2 3 | 3bitr4ri | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) |