Metamath Proof Explorer


Theorem risset

Description: Two ways to say " A belongs to B ". (Contributed by NM, 22-Nov-1994)

Ref Expression
Assertion risset ( 𝐴𝐵 ↔ ∃ 𝑥𝐵 𝑥 = 𝐴 )

Proof

Step Hyp Ref Expression
1 exancom ( ∃ 𝑥 ( 𝑥𝐵𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
2 df-rex ( ∃ 𝑥𝐵 𝑥 = 𝐴 ↔ ∃ 𝑥 ( 𝑥𝐵𝑥 = 𝐴 ) )
3 dfclel ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
4 1 2 3 3bitr4ri ( 𝐴𝐵 ↔ ∃ 𝑥𝐵 𝑥 = 𝐴 )