Description: Two ways to say " A belongs to B ". (Contributed by NM, 22-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risset | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) | |
| 3 | dfclel | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 4 | 1 2 3 | 3bitr4ri | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) |