Step |
Hyp |
Ref |
Expression |
1 |
|
rlim2.1 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) |
2 |
|
rlim2.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
3 |
|
rlim2.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) |
5 |
4
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
6 |
1 5
|
sylib |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) ) |
8 |
6 2 7
|
rlim |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ) ) ) |
9 |
3
|
biantrurd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ) ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 ≤ 𝑤 |
11 |
|
nfcv |
⊢ Ⅎ 𝑧 abs |
12 |
|
nffvmpt1 |
⊢ Ⅎ 𝑧 ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑧 − |
14 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐶 |
15 |
12 13 14
|
nfov |
⊢ Ⅎ 𝑧 ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) |
16 |
11 15
|
nffv |
⊢ Ⅎ 𝑧 ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑧 < |
18 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑥 |
19 |
16 17 18
|
nfbr |
⊢ Ⅎ 𝑧 ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 |
20 |
10 19
|
nfim |
⊢ Ⅎ 𝑧 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) |
21 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) |
22 |
|
breq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 ≤ 𝑤 ↔ 𝑦 ≤ 𝑧 ) ) |
23 |
22
|
imbrov2fvoveq |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) |
24 |
20 21 23
|
cbvralw |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) |
25 |
4
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = 𝐵 ) |
26 |
25
|
fvoveq1d |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
27 |
26
|
breq1d |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
28 |
27
|
imbi2d |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
29 |
28
|
ralimiaa |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
30 |
|
ralbi |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
31 |
1 29 30
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
32 |
24 31
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
33 |
32
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
34 |
33
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
35 |
8 9 34
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |