Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rlimcl | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimf | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
2 | rlimss | ⊢ ( 𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ ) | |
3 | eqidd | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
4 | 1 2 3 | rlim | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ⇝𝑟 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐴 ) ) < 𝑦 ) ) ) ) |
5 | 4 | ibi | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐴 ) ) < 𝑦 ) ) ) |
6 | 5 | simpld | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ ) |