Metamath Proof Explorer


Theorem rlimcl

Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion rlimcl ( 𝐹𝑟 𝐴𝐴 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 rlimf ( 𝐹𝑟 𝐴𝐹 : dom 𝐹 ⟶ ℂ )
2 rlimss ( 𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ )
3 eqidd ( ( 𝐹𝑟 𝐴𝑥 ∈ dom 𝐹 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
4 1 2 3 rlim ( 𝐹𝑟 𝐴 → ( 𝐹𝑟 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑧𝑥 → ( abs ‘ ( ( 𝐹𝑥 ) − 𝐴 ) ) < 𝑦 ) ) ) )
5 4 ibi ( 𝐹𝑟 𝐴 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑧𝑥 → ( abs ‘ ( ( 𝐹𝑥 ) − 𝐴 ) ) < 𝑦 ) ) )
6 5 simpld ( 𝐹𝑟 𝐴𝐴 ∈ ℂ )