Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcld2.1 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
2 |
|
rlimcld2.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
3 |
|
rlimcld2.3 |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
4 |
|
rlimcld2.4 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → 𝑅 ∈ ℝ+ ) |
5 |
|
rlimcld2.5 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) ∧ 𝑧 ∈ 𝐷 ) → 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
6 |
|
rlimcld2.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐷 ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
10 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) |
11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ¬ 𝐶 ∈ 𝐷 ) |
13 |
11 12
|
eldifd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ ( ℂ ∖ 𝐷 ) ) |
14 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ ) |
16 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 |
17 |
16
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ |
18 |
|
csbeq1a |
⊢ ( 𝑦 = 𝐶 → 𝑅 = ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) |
19 |
18
|
eleq1d |
⊢ ( 𝑦 = 𝐶 → ( 𝑅 ∈ ℝ+ ↔ ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) ) |
20 |
17 19
|
rspc |
⊢ ( 𝐶 ∈ ( ℂ ∖ 𝐷 ) → ( ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) ) |
21 |
13 15 20
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) |
22 |
8 21 9
|
rlimi |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) |
23 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) |
24 |
23
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ ) |
25 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ⊆ ℂ ) |
26 |
6
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐷 ) |
27 |
25 26
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
28 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
29 |
27 28
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
30 |
29
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) |
31 |
5
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
35 |
|
nfcv |
⊢ Ⅎ 𝑦 ≤ |
36 |
|
nfcv |
⊢ Ⅎ 𝑦 ( abs ‘ ( 𝑧 − 𝐶 ) ) |
37 |
16 35 36
|
nfbr |
⊢ Ⅎ 𝑦 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) |
38 |
34 37
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝑧 − 𝑦 ) = ( 𝑧 − 𝐶 ) ) |
40 |
39
|
fveq2d |
⊢ ( 𝑦 = 𝐶 → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑧 − 𝐶 ) ) ) |
41 |
18 40
|
breq12d |
⊢ ( 𝑦 = 𝐶 → ( 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ↔ ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) ) |
42 |
41
|
ralbidv |
⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) ) |
43 |
38 42
|
rspc |
⊢ ( 𝐶 ∈ ( ℂ ∖ 𝐷 ) → ( ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) → ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) ) |
44 |
13 33 43
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) |
46 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝐵 → ( abs ‘ ( 𝑧 − 𝐶 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
47 |
46
|
breq2d |
⊢ ( 𝑧 = 𝐵 → ( ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ↔ ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
48 |
47
|
rspcv |
⊢ ( 𝐵 ∈ 𝐷 → ( ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
49 |
26 45 48
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
50 |
24 30 49
|
lensymd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) |
51 |
|
id |
⊢ ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) → ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) |
52 |
51
|
imp |
⊢ ( ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) |
53 |
50 52
|
nsyl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) |
54 |
53
|
nrexdv |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ¬ ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) |
55 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
56 |
55 6
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
57 |
|
rlimss |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
58 |
2 57
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
59 |
56 58
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
60 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
61 |
59 60
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
62 |
|
supxrunb1 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
63 |
61 62
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
64 |
1 63
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) |
66 |
65
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) |
67 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) |
68 |
67
|
expcom |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) ) |
69 |
66 68
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) ) |
70 |
54 69
|
mtod |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) |
71 |
70
|
nrexdv |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ¬ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) |
72 |
22 71
|
condan |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |