Metamath Proof Explorer


Theorem rlimcld2

Description: If D is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in D , then the limit of the sequence also lies in D . (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcld2.1 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
rlimcld2.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐶 )
rlimcld2.3 ( 𝜑𝐷 ⊆ ℂ )
rlimcld2.4 ( ( 𝜑𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → 𝑅 ∈ ℝ+ )
rlimcld2.5 ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ 𝐷 ) ) ∧ 𝑧𝐷 ) → 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) )
rlimcld2.6 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐷 )
Assertion rlimcld2 ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 rlimcld2.1 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
2 rlimcld2.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐶 )
3 rlimcld2.3 ( 𝜑𝐷 ⊆ ℂ )
4 rlimcld2.4 ( ( 𝜑𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → 𝑅 ∈ ℝ+ )
5 rlimcld2.5 ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ 𝐷 ) ) ∧ 𝑧𝐷 ) → 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) )
6 rlimcld2.6 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐷 )
7 6 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐷 )
8 7 adantr ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ∀ 𝑥𝐴 𝐵𝐷 )
9 2 adantr ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐶 )
10 rlimcl ( ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐶𝐶 ∈ ℂ )
11 9 10 syl ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → 𝐶 ∈ ℂ )
12 simpr ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ¬ 𝐶𝐷 )
13 11 12 eldifd ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → 𝐶 ∈ ( ℂ ∖ 𝐷 ) )
14 4 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ )
15 14 adantr ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ )
16 nfcsb1v 𝑦 𝐶 / 𝑦 𝑅
17 16 nfel1 𝑦 𝐶 / 𝑦 𝑅 ∈ ℝ+
18 csbeq1a ( 𝑦 = 𝐶𝑅 = 𝐶 / 𝑦 𝑅 )
19 18 eleq1d ( 𝑦 = 𝐶 → ( 𝑅 ∈ ℝ+ 𝐶 / 𝑦 𝑅 ∈ ℝ+ ) )
20 17 19 rspc ( 𝐶 ∈ ( ℂ ∖ 𝐷 ) → ( ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ 𝐶 / 𝑦 𝑅 ∈ ℝ+ ) )
21 13 15 20 sylc ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → 𝐶 / 𝑦 𝑅 ∈ ℝ+ )
22 8 21 9 rlimi ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥𝐴 ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) )
23 21 ad2antrr ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐶 / 𝑦 𝑅 ∈ ℝ+ )
24 23 rpred ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐶 / 𝑦 𝑅 ∈ ℝ )
25 3 ad3antrrr ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐷 ⊆ ℂ )
26 6 ad4ant14 ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐵𝐷 )
27 25 26 sseldd ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ℂ )
28 11 ad2antrr ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐶 ∈ ℂ )
29 27 28 subcld ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( 𝐵𝐶 ) ∈ ℂ )
30 29 abscld ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( abs ‘ ( 𝐵𝐶 ) ) ∈ ℝ )
31 5 ralrimiva ( ( 𝜑𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → ∀ 𝑧𝐷 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) )
32 31 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧𝐷 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) )
33 32 adantr ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧𝐷 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) )
34 nfcv 𝑦 𝐷
35 nfcv 𝑦
36 nfcv 𝑦 ( abs ‘ ( 𝑧𝐶 ) )
37 16 35 36 nfbr 𝑦 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) )
38 34 37 nfralw 𝑦𝑧𝐷 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) )
39 oveq2 ( 𝑦 = 𝐶 → ( 𝑧𝑦 ) = ( 𝑧𝐶 ) )
40 39 fveq2d ( 𝑦 = 𝐶 → ( abs ‘ ( 𝑧𝑦 ) ) = ( abs ‘ ( 𝑧𝐶 ) ) )
41 18 40 breq12d ( 𝑦 = 𝐶 → ( 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) ↔ 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) ) ) )
42 41 ralbidv ( 𝑦 = 𝐶 → ( ∀ 𝑧𝐷 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) ↔ ∀ 𝑧𝐷 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) ) ) )
43 38 42 rspc ( 𝐶 ∈ ( ℂ ∖ 𝐷 ) → ( ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧𝐷 𝑅 ≤ ( abs ‘ ( 𝑧𝑦 ) ) → ∀ 𝑧𝐷 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) ) ) )
44 13 33 43 sylc ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ∀ 𝑧𝐷 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) ) )
45 44 ad2antrr ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → ∀ 𝑧𝐷 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) ) )
46 fvoveq1 ( 𝑧 = 𝐵 → ( abs ‘ ( 𝑧𝐶 ) ) = ( abs ‘ ( 𝐵𝐶 ) ) )
47 46 breq2d ( 𝑧 = 𝐵 → ( 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) ) ↔ 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝐵𝐶 ) ) ) )
48 47 rspcv ( 𝐵𝐷 → ( ∀ 𝑧𝐷 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝑧𝐶 ) ) → 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝐵𝐶 ) ) ) )
49 26 45 48 sylc ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐶 / 𝑦 𝑅 ≤ ( abs ‘ ( 𝐵𝐶 ) ) )
50 24 30 49 lensymd ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → ¬ ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 )
51 id ( ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) → ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) )
52 51 imp ( ( ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) ∧ 𝑟𝑥 ) → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 )
53 50 52 nsyl ( ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥𝐴 ) → ¬ ( ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) ∧ 𝑟𝑥 ) )
54 53 nrexdv ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) → ¬ ∃ 𝑥𝐴 ( ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) ∧ 𝑟𝑥 ) )
55 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
56 55 6 dmmptd ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
57 rlimss ( ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ )
58 2 57 syl ( 𝜑 → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ )
59 56 58 eqsstrrd ( 𝜑𝐴 ⊆ ℝ )
60 ressxr ℝ ⊆ ℝ*
61 59 60 sstrdi ( 𝜑𝐴 ⊆ ℝ* )
62 supxrunb1 ( 𝐴 ⊆ ℝ* → ( ∀ 𝑟 ∈ ℝ ∃ 𝑥𝐴 𝑟𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) )
63 61 62 syl ( 𝜑 → ( ∀ 𝑟 ∈ ℝ ∃ 𝑥𝐴 𝑟𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) )
64 1 63 mpbird ( 𝜑 → ∀ 𝑟 ∈ ℝ ∃ 𝑥𝐴 𝑟𝑥 )
65 64 adantr ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ∀ 𝑟 ∈ ℝ ∃ 𝑥𝐴 𝑟𝑥 )
66 65 r19.21bi ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) → ∃ 𝑥𝐴 𝑟𝑥 )
67 r19.29 ( ( ∀ 𝑥𝐴 ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) ∧ ∃ 𝑥𝐴 𝑟𝑥 ) → ∃ 𝑥𝐴 ( ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) ∧ 𝑟𝑥 ) )
68 67 expcom ( ∃ 𝑥𝐴 𝑟𝑥 → ( ∀ 𝑥𝐴 ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) → ∃ 𝑥𝐴 ( ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) ∧ 𝑟𝑥 ) ) )
69 66 68 syl ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑥𝐴 ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) → ∃ 𝑥𝐴 ( ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) ∧ 𝑟𝑥 ) ) )
70 54 69 mtod ( ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) ∧ 𝑟 ∈ ℝ ) → ¬ ∀ 𝑥𝐴 ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) )
71 70 nrexdv ( ( 𝜑 ∧ ¬ 𝐶𝐷 ) → ¬ ∃ 𝑟 ∈ ℝ ∀ 𝑥𝐴 ( 𝑟𝑥 → ( abs ‘ ( 𝐵𝐶 ) ) < 𝐶 / 𝑦 𝑅 ) )
72 22 71 condan ( 𝜑𝐶𝐷 )