Step |
Hyp |
Ref |
Expression |
1 |
|
rlimclim.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
rlimclim.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
rlimclim.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝑀 ∈ ℤ ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝐹 ⇝𝑟 𝐴 ) |
6 |
|
fdm |
⊢ ( 𝐹 : 𝑍 ⟶ ℂ → dom 𝐹 = 𝑍 ) |
7 |
|
eqimss2 |
⊢ ( dom 𝐹 = 𝑍 → 𝑍 ⊆ dom 𝐹 ) |
8 |
3 6 7
|
3syl |
⊢ ( 𝜑 → 𝑍 ⊆ dom 𝐹 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝑍 ⊆ dom 𝐹 ) |
10 |
1 4 5 9
|
rlimclim1 |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝐹 ⇝ 𝐴 ) |
11 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐴 ∈ ℂ ) |
13 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
15 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
16 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐹 ⇝ 𝐴 ) |
17 |
1 13 14 15 16
|
climi2 |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
18 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
19 |
1 18
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
20 |
|
zssre |
⊢ ℤ ⊆ ℝ |
21 |
19 20
|
sstri |
⊢ 𝑍 ⊆ ℝ |
22 |
|
fveq2 |
⊢ ( 𝑘 = 𝑤 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑤 ) ) |
23 |
22
|
fvoveq1d |
⊢ ( 𝑘 = 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) ) |
24 |
23
|
breq1d |
⊢ ( 𝑘 = 𝑤 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
25 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
26 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ∈ 𝑍 ) |
27 |
19 26
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ∈ ℤ ) |
28 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ 𝑍 ) |
29 |
19 28
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ ℤ ) |
30 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ≤ 𝑤 ) |
31 |
|
eluz2 |
⊢ ( 𝑤 ∈ ( ℤ≥ ‘ 𝑧 ) ↔ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧 ≤ 𝑤 ) ) |
32 |
27 29 30 31
|
syl3anbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ ( ℤ≥ ‘ 𝑧 ) ) |
33 |
24 25 32
|
rspcdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) |
34 |
33
|
expr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ 𝑤 ∈ 𝑍 ) → ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
35 |
34
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) → ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
36 |
35
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) |
37 |
36
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) |
38 |
|
ssrexv |
⊢ ( 𝑍 ⊆ ℝ → ( ∃ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) |
39 |
21 37 38
|
mpsylsyld |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) |
40 |
17 39
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
41 |
40
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
42 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 : 𝑍 ⟶ ℂ ) |
43 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝑍 ⊆ ℝ ) |
44 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑤 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
45 |
42 43 44
|
rlim |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → ( 𝐹 ⇝𝑟 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ) |
46 |
12 41 45
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ⇝𝑟 𝐴 ) |
47 |
10 46
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |