| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimclim.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | rlimclim.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | rlimclim.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 4 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝐴 )  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝐴 )  →  𝐹  ⇝𝑟  𝐴 ) | 
						
							| 6 |  | fdm | ⊢ ( 𝐹 : 𝑍 ⟶ ℂ  →  dom  𝐹  =  𝑍 ) | 
						
							| 7 |  | eqimss2 | ⊢ ( dom  𝐹  =  𝑍  →  𝑍  ⊆  dom  𝐹 ) | 
						
							| 8 | 3 6 7 | 3syl | ⊢ ( 𝜑  →  𝑍  ⊆  dom  𝐹 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝐴 )  →  𝑍  ⊆  dom  𝐹 ) | 
						
							| 10 | 1 4 5 9 | rlimclim1 | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝐴 )  →  𝐹  ⇝  𝐴 ) | 
						
							| 11 |  | climcl | ⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  ℂ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 13 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  →  𝑀  ∈  ℤ ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  →  𝑦  ∈  ℝ+ ) | 
						
							| 15 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  →  𝐹  ⇝  𝐴 ) | 
						
							| 17 | 1 13 14 15 16 | climi2 | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑧  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) | 
						
							| 18 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 19 | 1 18 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 20 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 21 | 19 20 | sstri | ⊢ 𝑍  ⊆  ℝ | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑘  =  𝑤  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 23 | 22 | fvoveq1d | ⊢ ( 𝑘  =  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) ) ) | 
						
							| 24 | 23 | breq1d | ⊢ ( 𝑘  =  𝑤  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) | 
						
							| 25 |  | simplrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) | 
						
							| 26 |  | simplrl | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  𝑧  ∈  𝑍 ) | 
						
							| 27 | 19 26 | sselid | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 28 |  | simprl | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  𝑤  ∈  𝑍 ) | 
						
							| 29 | 19 28 | sselid | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  𝑤  ∈  ℤ ) | 
						
							| 30 |  | simprr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  𝑧  ≤  𝑤 ) | 
						
							| 31 |  | eluz2 | ⊢ ( 𝑤  ∈  ( ℤ≥ ‘ 𝑧 )  ↔  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ  ∧  𝑧  ≤  𝑤 ) ) | 
						
							| 32 | 27 29 30 31 | syl3anbrc | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  𝑤  ∈  ( ℤ≥ ‘ 𝑧 ) ) | 
						
							| 33 | 24 25 32 | rspcdva | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ≤  𝑤 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) | 
						
							| 34 | 33 | expr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  ∧  𝑤  ∈  𝑍 )  →  ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) | 
						
							| 35 | 34 | ralrimiva | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦 ) )  →  ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) | 
						
							| 36 | 35 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦  →  ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) ) | 
						
							| 37 | 36 | reximdva | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  →  ( ∃ 𝑧  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦  →  ∃ 𝑧  ∈  𝑍 ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) ) | 
						
							| 38 |  | ssrexv | ⊢ ( 𝑍  ⊆  ℝ  →  ( ∃ 𝑧  ∈  𝑍 ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) ) | 
						
							| 39 | 21 37 38 | mpsylsyld | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  →  ( ∃ 𝑧  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑦  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) ) | 
						
							| 40 | 17 39 | mpd | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) | 
						
							| 41 | 40 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) | 
						
							| 42 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 43 | 21 | a1i | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝑍  ⊆  ℝ ) | 
						
							| 44 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  ∧  𝑤  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 45 | 42 43 44 | rlim | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  ( 𝐹  ⇝𝑟  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑍 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝐹 ‘ 𝑤 )  −  𝐴 ) )  <  𝑦 ) ) ) ) | 
						
							| 46 | 12 41 45 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝐹  ⇝𝑟  𝐴 ) | 
						
							| 47 | 10 46 | impbida | ⊢ ( 𝜑  →  ( 𝐹  ⇝𝑟  𝐴  ↔  𝐹  ⇝  𝐴 ) ) |