Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcn1.1 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑋 ) |
2 |
|
rlimcn1.2 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
3 |
|
rlimcn1.3 |
⊢ ( 𝜑 → 𝐺 ⇝𝑟 𝐶 ) |
4 |
|
rlimcn1.4 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
5 |
|
rlimcn1.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
6 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑋 ) |
7 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
8 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑣 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑣 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑣 = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
10 |
6 7 8 9
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) |
11 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ V ) |
12 |
11
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) ∈ V ) |
13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
14 |
7 3
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ⇝𝑟 𝐶 ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ⇝𝑟 𝐶 ) |
16 |
12 13 15
|
rlimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) ) |
17 |
|
fvoveq1 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑤 ) → ( abs ‘ ( 𝑧 − 𝐶 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) ) |
18 |
17
|
breq1d |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑤 ) → ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) ) |
19 |
18
|
imbrov2fvoveq |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑤 ) → ( ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
20 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
21 |
6
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑋 ) |
22 |
19 20 21
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
23 |
22
|
imim2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
24 |
23
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
25 |
24
|
reximdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
26 |
25
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ) |
27 |
16 26
|
mpid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
28 |
27
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
29 |
5 28
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
31 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ℂ ) |
32 |
6 31
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ℂ ) |
33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ℂ ) |
34 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝐺 = 𝐴 ) |
35 |
|
rlimss |
⊢ ( 𝐺 ⇝𝑟 𝐶 → dom 𝐺 ⊆ ℝ ) |
36 |
3 35
|
syl |
⊢ ( 𝜑 → dom 𝐺 ⊆ ℝ ) |
37 |
34 36
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
38 |
4 2
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
39 |
33 37 38
|
rlim2 |
⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
40 |
30 39
|
mpbird |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |
41 |
10 40
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |