Metamath Proof Explorer


Theorem rlimcn2

Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014)

Ref Expression
Hypotheses rlimcn2.1a ( ( 𝜑𝑧𝐴 ) → 𝐵𝑋 )
rlimcn2.1b ( ( 𝜑𝑧𝐴 ) → 𝐶𝑌 )
rlimcn2.2a ( 𝜑𝑅𝑋 )
rlimcn2.2b ( 𝜑𝑆𝑌 )
rlimcn2.3a ( 𝜑 → ( 𝑧𝐴𝐵 ) ⇝𝑟 𝑅 )
rlimcn2.3b ( 𝜑 → ( 𝑧𝐴𝐶 ) ⇝𝑟 𝑆 )
rlimcn2.4 ( 𝜑𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ )
rlimcn2.5 ( ( 𝜑𝑥 ∈ ℝ+ ) → ∃ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 ( ( ( abs ‘ ( 𝑢𝑅 ) ) < 𝑟 ∧ ( abs ‘ ( 𝑣𝑆 ) ) < 𝑠 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝑅 𝐹 𝑆 ) ) ) < 𝑥 ) )
Assertion rlimcn2 ( 𝜑 → ( 𝑧𝐴 ↦ ( 𝐵 𝐹 𝐶 ) ) ⇝𝑟 ( 𝑅 𝐹 𝑆 ) )

Proof

Step Hyp Ref Expression
1 rlimcn2.1a ( ( 𝜑𝑧𝐴 ) → 𝐵𝑋 )
2 rlimcn2.1b ( ( 𝜑𝑧𝐴 ) → 𝐶𝑌 )
3 rlimcn2.2a ( 𝜑𝑅𝑋 )
4 rlimcn2.2b ( 𝜑𝑆𝑌 )
5 rlimcn2.3a ( 𝜑 → ( 𝑧𝐴𝐵 ) ⇝𝑟 𝑅 )
6 rlimcn2.3b ( 𝜑 → ( 𝑧𝐴𝐶 ) ⇝𝑟 𝑆 )
7 rlimcn2.4 ( 𝜑𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ )
8 rlimcn2.5 ( ( 𝜑𝑥 ∈ ℝ+ ) → ∃ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 ( ( ( abs ‘ ( 𝑢𝑅 ) ) < 𝑟 ∧ ( abs ‘ ( 𝑣𝑆 ) ) < 𝑠 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝑅 𝐹 𝑆 ) ) ) < 𝑥 ) )
9 7 adantr ( ( 𝜑𝑧𝐴 ) → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ )
10 9 1 2 fovrnd ( ( 𝜑𝑧𝐴 ) → ( 𝐵 𝐹 𝐶 ) ∈ ℂ )
11 7 3 4 fovrnd ( 𝜑 → ( 𝑅 𝐹 𝑆 ) ∈ ℂ )
12 1 2 10 11 5 6 8 rlimcn3 ( 𝜑 → ( 𝑧𝐴 ↦ ( 𝐵 𝐹 𝐶 ) ) ⇝𝑟 ( 𝑅 𝐹 𝑆 ) )