Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimcn2.1a | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐵 ∈ 𝑋 ) | |
rlimcn2.1b | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ 𝑌 ) | ||
rlimcn2.2a | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | ||
rlimcn2.2b | ⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) | ||
rlimcn2.3a | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝑅 ) | ||
rlimcn2.3b | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝑆 ) | ||
rlimcn2.4 | ⊢ ( 𝜑 → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) | ||
rlimcn2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( abs ‘ ( 𝑢 − 𝑅 ) ) < 𝑟 ∧ ( abs ‘ ( 𝑣 − 𝑆 ) ) < 𝑠 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝑅 𝐹 𝑆 ) ) ) < 𝑥 ) ) | ||
Assertion | rlimcn2 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ ( 𝐵 𝐹 𝐶 ) ) ⇝𝑟 ( 𝑅 𝐹 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn2.1a | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐵 ∈ 𝑋 ) | |
2 | rlimcn2.1b | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ 𝑌 ) | |
3 | rlimcn2.2a | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | |
4 | rlimcn2.2b | ⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) | |
5 | rlimcn2.3a | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝑅 ) | |
6 | rlimcn2.3b | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝑆 ) | |
7 | rlimcn2.4 | ⊢ ( 𝜑 → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) | |
8 | rlimcn2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( abs ‘ ( 𝑢 − 𝑅 ) ) < 𝑟 ∧ ( abs ‘ ( 𝑣 − 𝑆 ) ) < 𝑠 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝑅 𝐹 𝑆 ) ) ) < 𝑥 ) ) | |
9 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
10 | 9 1 2 | fovrnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐵 𝐹 𝐶 ) ∈ ℂ ) |
11 | 7 3 4 | fovrnd | ⊢ ( 𝜑 → ( 𝑅 𝐹 𝑆 ) ∈ ℂ ) |
12 | 1 2 10 11 5 6 8 | rlimcn3 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ ( 𝐵 𝐹 𝐶 ) ) ⇝𝑟 ( 𝑅 𝐹 𝑆 ) ) |