| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimcn2.1a |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐵 ∈ 𝑋 ) |
| 2 |
|
rlimcn2.1b |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ 𝑌 ) |
| 3 |
|
rlimcn2.2a |
⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) |
| 4 |
|
rlimcn2.2b |
⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) |
| 5 |
|
rlimcn2.3a |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝑅 ) |
| 6 |
|
rlimcn2.3b |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝑆 ) |
| 7 |
|
rlimcn2.4 |
⊢ ( 𝜑 → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
| 8 |
|
rlimcn2.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( abs ‘ ( 𝑢 − 𝑅 ) ) < 𝑟 ∧ ( abs ‘ ( 𝑣 − 𝑆 ) ) < 𝑠 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝑅 𝐹 𝑆 ) ) ) < 𝑥 ) ) |
| 9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
| 10 |
9 1 2
|
fovcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐵 𝐹 𝐶 ) ∈ ℂ ) |
| 11 |
7 3 4
|
fovcdmd |
⊢ ( 𝜑 → ( 𝑅 𝐹 𝑆 ) ∈ ℂ ) |
| 12 |
1 2 10 11 5 6 8
|
rlimcn3 |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ ( 𝐵 𝐹 𝐶 ) ) ⇝𝑟 ( 𝑅 𝐹 𝑆 ) ) |