Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
2
|
subidd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐵 ) = 0 ) |
4 |
3
|
fveq2d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) = ( abs ‘ 0 ) ) |
5 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
6 |
4 5
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) = 0 ) |
7 |
|
rpgt0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 0 < 𝑦 ) |
9 |
6 8
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) |
10 |
9
|
a1d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
11 |
10
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑥 ∈ 𝐴 ( 0 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
12 |
|
breq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 ≤ 𝑥 ↔ 0 ≤ 𝑥 ) ) |
13 |
12
|
rspceaimv |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 0 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
14 |
1 11 13
|
sylancr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
16 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
17 |
16
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
18 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → 𝐴 ⊆ ℝ ) |
19 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
20 |
17 18 19
|
rlim2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐵 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) ) |
21 |
15 20
|
mpbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐵 ) |