Step |
Hyp |
Ref |
Expression |
1 |
|
rlimadd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
rlimadd.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
3 |
|
rlimadd.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) |
4 |
|
rlimadd.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) |
5 |
|
rlimdiv.7 |
⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
6 |
|
rlimdiv.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
7 |
1 3
|
rlimmptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
8 |
2 4
|
rlimmptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
9 |
8 6
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐶 ) ∈ ℂ ) |
10 |
|
eldifsn |
⊢ ( 𝐶 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
11 |
8 6 10
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) ) |
12 |
11
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) |
13 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → 𝐸 ∈ ℂ ) |
14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
15 |
|
eldifsn |
⊢ ( 𝐸 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐸 ∈ ℂ ∧ 𝐸 ≠ 0 ) ) |
16 |
14 5 15
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 ∈ ( ℂ ∖ { 0 } ) ) |
17 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
18 |
|
reccl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / 𝑦 ) ∈ ℂ ) |
19 |
17 18
|
sylbi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑦 ) ∈ ℂ ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 1 / 𝑦 ) ∈ ℂ ) |
21 |
20
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
22 |
|
eqid |
⊢ ( if ( 1 ≤ ( ( abs ‘ 𝐸 ) · 𝑧 ) , 1 , ( ( abs ‘ 𝐸 ) · 𝑧 ) ) · ( ( abs ‘ 𝐸 ) / 2 ) ) = ( if ( 1 ≤ ( ( abs ‘ 𝐸 ) · 𝑧 ) , 1 , ( ( abs ‘ 𝐸 ) · 𝑧 ) ) · ( ( abs ‘ 𝐸 ) / 2 ) ) |
23 |
22
|
reccn2 |
⊢ ( ( 𝐸 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) |
24 |
16 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 1 / 𝑦 ) = ( 1 / 𝑣 ) ) |
26 |
|
eqid |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) |
27 |
|
ovex |
⊢ ( 1 / 𝑣 ) ∈ V |
28 |
25 26 27
|
fvmpt |
⊢ ( 𝑣 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) = ( 1 / 𝑣 ) ) |
29 |
|
oveq2 |
⊢ ( 𝑦 = 𝐸 → ( 1 / 𝑦 ) = ( 1 / 𝐸 ) ) |
30 |
|
ovex |
⊢ ( 1 / 𝐸 ) ∈ V |
31 |
29 26 30
|
fvmpt |
⊢ ( 𝐸 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) = ( 1 / 𝐸 ) ) |
32 |
16 31
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) = ( 1 / 𝐸 ) ) |
33 |
28 32
|
oveqan12rd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) = ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) = ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) ) |
35 |
34
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ↔ ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) |
36 |
35
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ↔ ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) ) |
37 |
36
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ↔ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) ) |
38 |
37
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) ) |
39 |
38
|
biimpar |
⊢ ( ( 𝜑 ∧ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ) |
40 |
24 39
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ) |
41 |
12 16 4 21 40
|
rlimcn1 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ⇝𝑟 ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) |
42 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
43 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ) |
44 |
|
oveq2 |
⊢ ( 𝑦 = 𝐶 → ( 1 / 𝑦 ) = ( 1 / 𝐶 ) ) |
45 |
11 42 43 44
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐶 ) ) ) |
46 |
41 45 32
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐶 ) ) ⇝𝑟 ( 1 / 𝐸 ) ) |
47 |
7 9 3 46
|
rlimmul |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) ⇝𝑟 ( 𝐷 · ( 1 / 𝐸 ) ) ) |
48 |
7 8 6
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
49 |
48
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
50 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) |
51 |
3 50
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
52 |
51 14 5
|
divrecd |
⊢ ( 𝜑 → ( 𝐷 / 𝐸 ) = ( 𝐷 · ( 1 / 𝐸 ) ) ) |
53 |
47 49 52
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ⇝𝑟 ( 𝐷 / 𝐸 ) ) |