Metamath Proof Explorer


Theorem rlimdm

Description: Two ways to express that a function has a limit. (The expression ( ~>rF ) is sometimes useful as a shorthand for "the unique limit of the function F "). (Contributed by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses rlimuni.1 ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
rlimuni.2 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
Assertion rlimdm ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 rlimuni.1 ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
2 rlimuni.2 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
3 eldmg ( 𝐹 ∈ dom ⇝𝑟 → ( 𝐹 ∈ dom ⇝𝑟 ↔ ∃ 𝑥 𝐹𝑟 𝑥 ) )
4 3 ibi ( 𝐹 ∈ dom ⇝𝑟 → ∃ 𝑥 𝐹𝑟 𝑥 )
5 simpr ( ( 𝜑𝐹𝑟 𝑥 ) → 𝐹𝑟 𝑥 )
6 df-fv ( ⇝𝑟𝐹 ) = ( ℩ 𝑦 𝐹𝑟 𝑦 )
7 1 adantr ( ( 𝜑 ∧ ( 𝐹𝑟 𝑥𝐹𝑟 𝑦 ) ) → 𝐹 : 𝐴 ⟶ ℂ )
8 2 adantr ( ( 𝜑 ∧ ( 𝐹𝑟 𝑥𝐹𝑟 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ )
9 simprr ( ( 𝜑 ∧ ( 𝐹𝑟 𝑥𝐹𝑟 𝑦 ) ) → 𝐹𝑟 𝑦 )
10 simprl ( ( 𝜑 ∧ ( 𝐹𝑟 𝑥𝐹𝑟 𝑦 ) ) → 𝐹𝑟 𝑥 )
11 7 8 9 10 rlimuni ( ( 𝜑 ∧ ( 𝐹𝑟 𝑥𝐹𝑟 𝑦 ) ) → 𝑦 = 𝑥 )
12 11 expr ( ( 𝜑𝐹𝑟 𝑥 ) → ( 𝐹𝑟 𝑦𝑦 = 𝑥 ) )
13 breq2 ( 𝑦 = 𝑥 → ( 𝐹𝑟 𝑦𝐹𝑟 𝑥 ) )
14 5 13 syl5ibrcom ( ( 𝜑𝐹𝑟 𝑥 ) → ( 𝑦 = 𝑥𝐹𝑟 𝑦 ) )
15 12 14 impbid ( ( 𝜑𝐹𝑟 𝑥 ) → ( 𝐹𝑟 𝑦𝑦 = 𝑥 ) )
16 15 adantr ( ( ( 𝜑𝐹𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( 𝐹𝑟 𝑦𝑦 = 𝑥 ) )
17 16 iota5 ( ( ( 𝜑𝐹𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( ℩ 𝑦 𝐹𝑟 𝑦 ) = 𝑥 )
18 17 elvd ( ( 𝜑𝐹𝑟 𝑥 ) → ( ℩ 𝑦 𝐹𝑟 𝑦 ) = 𝑥 )
19 6 18 syl5eq ( ( 𝜑𝐹𝑟 𝑥 ) → ( ⇝𝑟𝐹 ) = 𝑥 )
20 5 19 breqtrrd ( ( 𝜑𝐹𝑟 𝑥 ) → 𝐹𝑟 ( ⇝𝑟𝐹 ) )
21 20 ex ( 𝜑 → ( 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹 ) ) )
22 21 exlimdv ( 𝜑 → ( ∃ 𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹 ) ) )
23 4 22 syl5 ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹 ) ) )
24 rlimrel Rel ⇝𝑟
25 24 releldmi ( 𝐹𝑟 ( ⇝𝑟𝐹 ) → 𝐹 ∈ dom ⇝𝑟 )
26 23 25 impbid1 ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹 ) ) )