Step |
Hyp |
Ref |
Expression |
1 |
|
rlimuni.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
rlimuni.2 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
3 |
|
eldmg |
⊢ ( 𝐹 ∈ dom ⇝𝑟 → ( 𝐹 ∈ dom ⇝𝑟 ↔ ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) ) |
4 |
3
|
ibi |
⊢ ( 𝐹 ∈ dom ⇝𝑟 → ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 𝑥 ) |
6 |
|
df-fv |
⊢ ( ⇝𝑟 ‘ 𝐹 ) = ( ℩ 𝑦 𝐹 ⇝𝑟 𝑦 ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝐹 ⇝𝑟 𝑦 ) |
10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝐹 ⇝𝑟 𝑥 ) |
11 |
7 8 9 10
|
rlimuni |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝑦 = 𝑥 ) |
12 |
11
|
expr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑦 → 𝑦 = 𝑥 ) ) |
13 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥 ) ) |
14 |
5 13
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝑦 = 𝑥 → 𝐹 ⇝𝑟 𝑦 ) ) |
15 |
12 14
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥 ) ) |
17 |
16
|
iota5 |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( ℩ 𝑦 𝐹 ⇝𝑟 𝑦 ) = 𝑥 ) |
18 |
17
|
elvd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ℩ 𝑦 𝐹 ⇝𝑟 𝑦 ) = 𝑥 ) |
19 |
6 18
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ⇝𝑟 ‘ 𝐹 ) = 𝑥 ) |
20 |
5 19
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) |
21 |
20
|
ex |
⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |
22 |
21
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |
23 |
4 22
|
syl5 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |
24 |
|
rlimrel |
⊢ Rel ⇝𝑟 |
25 |
24
|
releldmi |
⊢ ( 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) → 𝐹 ∈ dom ⇝𝑟 ) |
26 |
23 25
|
impbid1 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |