| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimeq.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 2 |
|
rlimeq.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 3 |
|
rlimeq.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 4 |
|
rlimeq.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 = 𝐶 ) |
| 5 |
|
rlimss |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 7 |
6 1
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 |
7
|
sseq1d |
⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 9 |
5 8
|
imbitrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 → 𝐴 ⊆ ℝ ) ) |
| 10 |
|
rlimss |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ ℝ ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 12 |
11 2
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = 𝐴 ) |
| 13 |
12
|
sseq1d |
⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 14 |
10 13
|
imbitrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → 𝐴 ⊆ ℝ ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) |
| 16 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐷 [,) +∞ ) ) ) |
| 17 |
15 16
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐷 [,) +∞ ) ) ) |
| 18 |
17
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝑥 ∈ 𝐴 ) |
| 19 |
17
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝑥 ∈ ( 𝐷 [,) +∞ ) ) |
| 20 |
|
elicopnf |
⊢ ( 𝐷 ∈ ℝ → ( 𝑥 ∈ ( 𝐷 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) ) |
| 21 |
3 20
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐷 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) ) |
| 22 |
21
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) |
| 23 |
19 22
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) |
| 24 |
23
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝐷 ≤ 𝑥 ) |
| 25 |
18 24
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) |
| 26 |
25 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝐵 = 𝐶 ) |
| 27 |
26
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐶 ) ) |
| 28 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ⊆ 𝐴 |
| 29 |
|
resmpt |
⊢ ( ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐵 ) ) |
| 30 |
28 29
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐵 ) |
| 31 |
|
resmpt |
⊢ ( ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐶 ) ) |
| 32 |
28 31
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐶 ) |
| 33 |
27 30 32
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) ) |
| 34 |
|
resres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) |
| 35 |
|
resres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) |
| 36 |
33 34 35
|
3eqtr4g |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) ) |
| 37 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 38 |
|
resmpt |
⊢ ( 𝐴 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 39 |
|
reseq1 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ) |
| 40 |
37 38 39
|
mp2b |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) |
| 41 |
|
resmpt |
⊢ ( 𝐴 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 42 |
|
reseq1 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ) |
| 43 |
37 41 42
|
mp2b |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) |
| 44 |
36 40 43
|
3eqtr3g |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ) |
| 45 |
44
|
breq1d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 47 |
1
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) |
| 50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐷 ∈ ℝ ) |
| 51 |
48 49 50
|
rlimresb |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 52 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 54 |
53 49 50
|
rlimresb |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 55 |
46 51 54
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) |
| 56 |
55
|
ex |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) ) |
| 57 |
9 14 56
|
pm5.21ndd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) |