Step |
Hyp |
Ref |
Expression |
1 |
|
rlimi.1 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
2 |
|
rlimi.2 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
3 |
|
rlimi.3 |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
4 |
|
breq2 |
⊢ ( 𝑥 = 𝑅 → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝑅 → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) |
6 |
5
|
rexralbidv |
⊢ ( 𝑥 = 𝑅 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) |
7 |
|
rlimf |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) |
9 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) |
10 |
9
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑉 ) |
11 |
1 10
|
sylib |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑉 ) |
12 |
11
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
13 |
12
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) ) |
14 |
8 13
|
mpbid |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
15 |
9
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
16 |
14 15
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) |
17 |
|
rlimss |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
19 |
12 18
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
20 |
|
rlimcl |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) |
21 |
3 20
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
22 |
16 19 21
|
rlim2 |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
23 |
3 22
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
24 |
6 23 2
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |