Step |
Hyp |
Ref |
Expression |
1 |
|
rlimi.1 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
2 |
|
rlimi.2 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
3 |
|
rlimi.3 |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
4 |
|
rlimi.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
1 2 3
|
rlimi |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |
6 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) |
7 |
6
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
8 |
|
fndm |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
9 |
1 7 8
|
3syl |
⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
10 |
|
rlimss |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
12 |
9 11
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
13 |
|
rexico |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) |
14 |
12 4 13
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) |
15 |
5 14
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |