| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimle.1 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 2 |
|
rlimle.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) |
| 3 |
|
rlimle.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) |
| 4 |
|
rlimle.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 5 |
|
rlimle.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 6 |
|
rlimle.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 7 |
5 4 3 2
|
rlimsub |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) ⇝𝑟 ( 𝐸 − 𝐷 ) ) |
| 8 |
5 4
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 9 |
5 4
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( 𝐶 − 𝐵 ) ↔ 𝐵 ≤ 𝐶 ) ) |
| 10 |
6 9
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) |
| 11 |
1 7 8 10
|
rlimge0 |
⊢ ( 𝜑 → 0 ≤ ( 𝐸 − 𝐷 ) ) |
| 12 |
1 3 5
|
rlimrecl |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 13 |
1 2 4
|
rlimrecl |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 14 |
12 13
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐸 − 𝐷 ) ↔ 𝐷 ≤ 𝐸 ) ) |
| 15 |
11 14
|
mpbid |
⊢ ( 𝜑 → 𝐷 ≤ 𝐸 ) |