Metamath Proof Explorer


Theorem rlimmptrcl

Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimabs.1 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 )
rlimabs.2 ( 𝜑 → ( 𝑘𝐴𝐵 ) ⇝𝑟 𝐶 )
Assertion rlimmptrcl ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 rlimabs.1 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 )
2 rlimabs.2 ( 𝜑 → ( 𝑘𝐴𝐵 ) ⇝𝑟 𝐶 )
3 rlimf ( ( 𝑘𝐴𝐵 ) ⇝𝑟 𝐶 → ( 𝑘𝐴𝐵 ) : dom ( 𝑘𝐴𝐵 ) ⟶ ℂ )
4 2 3 syl ( 𝜑 → ( 𝑘𝐴𝐵 ) : dom ( 𝑘𝐴𝐵 ) ⟶ ℂ )
5 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
6 5 1 dmmptd ( 𝜑 → dom ( 𝑘𝐴𝐵 ) = 𝐴 )
7 6 feq2d ( 𝜑 → ( ( 𝑘𝐴𝐵 ) : dom ( 𝑘𝐴𝐵 ) ⟶ ℂ ↔ ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ℂ ) )
8 4 7 mpbid ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ℂ )
9 8 fvmptelrn ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )