Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimabs.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
rlimabs.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
Assertion | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimabs.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
2 | rlimabs.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
3 | rlimf | ⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) |
5 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
6 | 5 1 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
7 | 6 | feq2d | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ↔ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) ) |
8 | 4 7 | mpbid | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
9 | 8 | fvmptelrn | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |