| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimneg.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
rlimneg.2 |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
| 3 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℂ ) |
| 4 |
1 2
|
rlimmptrcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 5 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 6 |
|
dmmptg |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 |
|
rlimss |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 10 |
7 9
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 11 |
|
0cn |
⊢ 0 ∈ ℂ |
| 12 |
|
rlimconst |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 0 ∈ ℂ ) → ( 𝑘 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
| 13 |
10 11 12
|
sylancl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
| 14 |
3 4 13 2
|
rlimsub |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) ⇝𝑟 ( 0 − 𝐶 ) ) |
| 15 |
|
df-neg |
⊢ - 𝐵 = ( 0 − 𝐵 ) |
| 16 |
15
|
mpteq2i |
⊢ ( 𝑘 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) |
| 17 |
|
df-neg |
⊢ - 𝐶 = ( 0 − 𝐶 ) |
| 18 |
14 16 17
|
3brtr4g |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ - 𝐵 ) ⇝𝑟 - 𝐶 ) |