| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimneg.1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | rlimneg.2 | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐶 ) | 
						
							| 3 |  | 0cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ∈  ℂ ) | 
						
							| 4 | 1 2 | rlimmptrcl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 | 1 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  𝑉 ) | 
						
							| 6 |  | dmmptg | ⊢ ( ∀ 𝑘  ∈  𝐴 𝐵  ∈  𝑉  →  dom  ( 𝑘  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  dom  ( 𝑘  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 8 |  | rlimss | ⊢ ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐶  →  dom  ( 𝑘  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  dom  ( 𝑘  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 10 | 7 9 | eqsstrrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 11 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 12 |  | rlimconst | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  0  ∈  ℂ )  →  ( 𝑘  ∈  𝐴  ↦  0 )  ⇝𝑟  0 ) | 
						
							| 13 | 10 11 12 | sylancl | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  0 )  ⇝𝑟  0 ) | 
						
							| 14 | 3 4 13 2 | rlimsub | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  ( 0  −  𝐵 ) )  ⇝𝑟  ( 0  −  𝐶 ) ) | 
						
							| 15 |  | df-neg | ⊢ - 𝐵  =  ( 0  −  𝐵 ) | 
						
							| 16 | 15 | mpteq2i | ⊢ ( 𝑘  ∈  𝐴  ↦  - 𝐵 )  =  ( 𝑘  ∈  𝐴  ↦  ( 0  −  𝐵 ) ) | 
						
							| 17 |  | df-neg | ⊢ - 𝐶  =  ( 0  −  𝐶 ) | 
						
							| 18 | 14 16 17 | 3brtr4g | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  - 𝐵 )  ⇝𝑟  - 𝐶 ) |