Step |
Hyp |
Ref |
Expression |
1 |
|
rlimno1.1 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
2 |
|
rlimno1.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 ) |
3 |
|
rlimno1.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
rlimno1.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
5 |
|
fal |
⊢ ¬ ⊥ |
6 |
3 4
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
12 |
9 10 11
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
13 |
|
1rp |
⊢ 1 ∈ ℝ+ |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ+ ) |
15 |
|
max1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
16 |
10 9 15
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
17 |
12 14 16
|
rpgecld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ+ ) |
18 |
17
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∈ ℝ+ ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 ) |
20 |
8 18 19
|
rlimi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ) |
21 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) = 𝐴 ) |
22 |
7 21
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) = 𝐴 ) |
23 |
|
rlimss |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⊆ ℝ ) |
24 |
2 23
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⊆ ℝ ) |
25 |
22 24
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
27 |
|
rexanre |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
29 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
30 |
25 29
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
31 |
|
supxrunb1 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
33 |
1 32
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ) |
35 |
|
r19.29 |
⊢ ( ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ∃ 𝑐 ∈ ℝ ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
36 |
|
r19.29r |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
37 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
38 |
37
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝐵 ∈ ℂ ) |
39 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
40 |
39
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝐵 ≠ 0 ) |
41 |
38 40
|
reccld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
42 |
41
|
subid1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( 1 / 𝐵 ) − 0 ) = ( 1 / 𝐵 ) ) |
43 |
42
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) = ( abs ‘ ( 1 / 𝐵 ) ) ) |
44 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 1 ∈ ℂ ) |
45 |
44 38 40
|
absdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( 1 / 𝐵 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐵 ) ) ) |
46 |
10
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 1 ∈ ℝ ) |
47 |
|
0le1 |
⊢ 0 ≤ 1 |
48 |
47
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 0 ≤ 1 ) |
49 |
46 48
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 1 ) = 1 ) |
50 |
49
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( abs ‘ 1 ) / ( abs ‘ 𝐵 ) ) = ( 1 / ( abs ‘ 𝐵 ) ) ) |
51 |
43 45 50
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) = ( 1 / ( abs ‘ 𝐵 ) ) ) |
52 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ+ ) |
53 |
52
|
rprecred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∈ ℝ ) |
54 |
37 39
|
absrpcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
55 |
54
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
56 |
55
|
rprecred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / ( abs ‘ 𝐵 ) ) ∈ ℝ ) |
57 |
55
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
58 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
59 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
60 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ≤ 𝑦 ) |
61 |
|
max2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
62 |
10 58 61
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝑦 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
63 |
57 58 59 60 62
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
64 |
55 52 46 48 63
|
lediv2ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ≤ ( 1 / ( abs ‘ 𝐵 ) ) ) |
65 |
53 56 64
|
lensymd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ¬ ( 1 / ( abs ‘ 𝐵 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) |
66 |
51 65
|
eqnbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ¬ ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) |
67 |
66
|
pm2.21d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) → ⊥ ) ) |
68 |
67
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( abs ‘ 𝐵 ) ≤ 𝑦 ∧ ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) → ⊥ ) ) |
69 |
68
|
ancomsd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ⊥ ) ) |
70 |
69
|
imim2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ( 𝑐 ≤ 𝑥 → ⊥ ) ) ) |
71 |
70
|
impcomd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
72 |
71
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
73 |
36 72
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
74 |
73
|
rexlimdvw |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
75 |
35 74
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
76 |
34 75
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ⊥ ) ) |
77 |
28 76
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ⊥ ) ) |
78 |
20 77
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ⊥ ) ) |
79 |
5 78
|
mtoi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ¬ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
80 |
79
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
81 |
25 3
|
elo1mpt |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
82 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
83 |
81 82
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
84 |
80 83
|
mtbird |
⊢ ( 𝜑 → ¬ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |