| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rlim |
⊢ ⇝𝑟 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |
| 2 |
|
opabssxp |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } ⊆ ( ( ℂ ↑pm ℝ ) × ℂ ) |
| 3 |
1 2
|
eqsstri |
⊢ ⇝𝑟 ⊆ ( ( ℂ ↑pm ℝ ) × ℂ ) |
| 4 |
|
dmss |
⊢ ( ⇝𝑟 ⊆ ( ( ℂ ↑pm ℝ ) × ℂ ) → dom ⇝𝑟 ⊆ dom ( ( ℂ ↑pm ℝ ) × ℂ ) ) |
| 5 |
3 4
|
ax-mp |
⊢ dom ⇝𝑟 ⊆ dom ( ( ℂ ↑pm ℝ ) × ℂ ) |
| 6 |
|
dmxpss |
⊢ dom ( ( ℂ ↑pm ℝ ) × ℂ ) ⊆ ( ℂ ↑pm ℝ ) |
| 7 |
5 6
|
sstri |
⊢ dom ⇝𝑟 ⊆ ( ℂ ↑pm ℝ ) |
| 8 |
|
rlimrel |
⊢ Rel ⇝𝑟 |
| 9 |
8
|
releldmi |
⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ dom ⇝𝑟 ) |
| 10 |
7 9
|
sselid |
⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |