Step |
Hyp |
Ref |
Expression |
1 |
|
rlimabs.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
rlimabs.2 |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
3 |
1 2
|
rlimmptrcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
rlimcl |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
6 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
7 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
8 |
|
fss |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ ) |
9 |
6 7 8
|
mp2an |
⊢ ℜ : ℂ ⟶ ℂ |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℜ : ℂ ⟶ ℂ ) |
11 |
|
recn2 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐶 ) ) ) < 𝑥 ) ) |
12 |
5 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐶 ) ) ) < 𝑥 ) ) |
13 |
3 5 2 10 12
|
rlimcn1b |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ⇝𝑟 ( ℜ ‘ 𝐶 ) ) |