Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcld2.1 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
2 |
|
rlimcld2.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
3 |
|
rlimrecl.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
5 |
4
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
6 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℂ ∖ ℝ ) → 𝑦 ∈ ℂ ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → 𝑦 ∈ ℂ ) |
8 |
7
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℂ ) |
10 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℂ ∖ ℝ ) → ¬ 𝑦 ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ¬ 𝑦 ∈ ℝ ) |
12 |
|
reim0b |
⊢ ( 𝑦 ∈ ℂ → ( 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) = 0 ) ) |
13 |
7 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) = 0 ) ) |
14 |
13
|
necon3bbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ¬ 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) ≠ 0 ) ) |
15 |
11 14
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ≠ 0 ) |
16 |
9 15
|
absrpcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) ∈ ℝ+ ) |
17 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℂ ) |
20 |
17 19
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝑦 − 𝑧 ) ∈ ℂ ) |
21 |
|
absimle |
⊢ ( ( 𝑦 − 𝑧 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
23 |
17 19
|
imsubd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ ( 𝑦 − 𝑧 ) ) = ( ( ℑ ‘ 𝑦 ) − ( ℑ ‘ 𝑧 ) ) ) |
24 |
|
reim0 |
⊢ ( 𝑧 ∈ ℝ → ( ℑ ‘ 𝑧 ) = 0 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑧 ) = 0 ) |
26 |
25
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ℑ ‘ 𝑦 ) − ( ℑ ‘ 𝑧 ) ) = ( ( ℑ ‘ 𝑦 ) − 0 ) ) |
27 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) ∈ ℂ ) |
28 |
27
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ℑ ‘ 𝑦 ) − 0 ) = ( ℑ ‘ 𝑦 ) ) |
29 |
23 26 28
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) |
30 |
29
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) = ( abs ‘ ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) ) |
31 |
19 17
|
abssubd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
32 |
22 30 31
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
33 |
1 2 5 16 32 3
|
rlimcld2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |