| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimcld2.1 | ⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 2 |  | rlimcld2.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐶 ) | 
						
							| 3 |  | rlimrege0.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | rlimrege0.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( ℜ ‘ 𝐵 ) ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) }  ⊆  ℂ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) }  ⊆  ℂ ) | 
						
							| 7 |  | eldifi | ⊢ ( 𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  𝑦  ∈  ℂ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  →  𝑦  ∈  ℂ ) | 
						
							| 9 | 8 | recld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  →  ( ℜ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( ℜ ‘ 𝑤 )  =  ( ℜ ‘ 𝑦 ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑤  =  𝑦  →  ( 0  ≤  ( ℜ ‘ 𝑤 )  ↔  0  ≤  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 12 | 11 | notbid | ⊢ ( 𝑤  =  𝑦  →  ( ¬  0  ≤  ( ℜ ‘ 𝑤 )  ↔  ¬  0  ≤  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 13 |  | notrab | ⊢ ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  =  { 𝑤  ∈  ℂ  ∣  ¬  0  ≤  ( ℜ ‘ 𝑤 ) } | 
						
							| 14 | 12 13 | elrab2 | ⊢ ( 𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  ↔  ( 𝑦  ∈  ℂ  ∧  ¬  0  ≤  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 15 | 14 | simprbi | ⊢ ( 𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ¬  0  ≤  ( ℜ ‘ 𝑦 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  →  ¬  0  ≤  ( ℜ ‘ 𝑦 ) ) | 
						
							| 17 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 18 |  | ltnle | ⊢ ( ( ( ℜ ‘ 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ℜ ‘ 𝑦 )  <  0  ↔  ¬  0  ≤  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 19 | 9 17 18 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  →  ( ( ℜ ‘ 𝑦 )  <  0  ↔  ¬  0  ≤  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 20 | 16 19 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  →  ( ℜ ‘ 𝑦 )  <  0 ) | 
						
							| 21 | 9 20 | negelrpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  →  - ( ℜ ‘ 𝑦 )  ∈  ℝ+ ) | 
						
							| 22 | 9 | renegcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  →  - ( ℜ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  - ( ℜ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 24 |  | elrabi | ⊢ ( 𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) }  →  𝑧  ∈  ℂ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  𝑧  ∈  ℂ ) | 
						
							| 26 | 8 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  𝑦  ∈  ℂ ) | 
						
							| 27 | 25 26 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( 𝑧  −  𝑦 )  ∈  ℂ ) | 
						
							| 28 | 27 | recld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( ℜ ‘ ( 𝑧  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 29 | 27 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( abs ‘ ( 𝑧  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 30 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  0  ∈  ℝ ) | 
						
							| 31 | 25 | recld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( ℜ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 32 | 26 | recld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( ℜ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑤  =  𝑧  →  ( ℜ ‘ 𝑤 )  =  ( ℜ ‘ 𝑧 ) ) | 
						
							| 34 | 33 | breq2d | ⊢ ( 𝑤  =  𝑧  →  ( 0  ≤  ( ℜ ‘ 𝑤 )  ↔  0  ≤  ( ℜ ‘ 𝑧 ) ) ) | 
						
							| 35 | 34 | elrab | ⊢ ( 𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) }  ↔  ( 𝑧  ∈  ℂ  ∧  0  ≤  ( ℜ ‘ 𝑧 ) ) ) | 
						
							| 36 | 35 | simprbi | ⊢ ( 𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) }  →  0  ≤  ( ℜ ‘ 𝑧 ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  0  ≤  ( ℜ ‘ 𝑧 ) ) | 
						
							| 38 | 30 31 32 37 | lesub1dd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( 0  −  ( ℜ ‘ 𝑦 ) )  ≤  ( ( ℜ ‘ 𝑧 )  −  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 39 |  | df-neg | ⊢ - ( ℜ ‘ 𝑦 )  =  ( 0  −  ( ℜ ‘ 𝑦 ) ) | 
						
							| 40 | 39 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  - ( ℜ ‘ 𝑦 )  =  ( 0  −  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 41 | 25 26 | resubd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( ℜ ‘ ( 𝑧  −  𝑦 ) )  =  ( ( ℜ ‘ 𝑧 )  −  ( ℜ ‘ 𝑦 ) ) ) | 
						
							| 42 | 38 40 41 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  - ( ℜ ‘ 𝑦 )  ≤  ( ℜ ‘ ( 𝑧  −  𝑦 ) ) ) | 
						
							| 43 | 27 | releabsd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  ( ℜ ‘ ( 𝑧  −  𝑦 ) )  ≤  ( abs ‘ ( 𝑧  −  𝑦 ) ) ) | 
						
							| 44 | 23 28 29 42 43 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) )  ∧  𝑧  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } )  →  - ( ℜ ‘ 𝑦 )  ≤  ( abs ‘ ( 𝑧  −  𝑦 ) ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑤  =  𝐵  →  ( ℜ ‘ 𝑤 )  =  ( ℜ ‘ 𝐵 ) ) | 
						
							| 46 | 45 | breq2d | ⊢ ( 𝑤  =  𝐵  →  ( 0  ≤  ( ℜ ‘ 𝑤 )  ↔  0  ≤  ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 47 | 46 3 4 | elrabd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) | 
						
							| 48 | 1 2 6 21 44 47 | rlimcld2 | ⊢ ( 𝜑  →  𝐶  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) } ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑤  =  𝐶  →  ( ℜ ‘ 𝑤 )  =  ( ℜ ‘ 𝐶 ) ) | 
						
							| 50 | 49 | breq2d | ⊢ ( 𝑤  =  𝐶  →  ( 0  ≤  ( ℜ ‘ 𝑤 )  ↔  0  ≤  ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 51 | 50 | elrab | ⊢ ( 𝐶  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) }  ↔  ( 𝐶  ∈  ℂ  ∧  0  ≤  ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 52 | 51 | simprbi | ⊢ ( 𝐶  ∈  { 𝑤  ∈  ℂ  ∣  0  ≤  ( ℜ ‘ 𝑤 ) }  →  0  ≤  ( ℜ ‘ 𝐶 ) ) | 
						
							| 53 | 48 52 | syl | ⊢ ( 𝜑  →  0  ≤  ( ℜ ‘ 𝐶 ) ) |