Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rlimrel | ⊢ Rel ⇝𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rlim | ⊢ ⇝𝑟 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } | |
2 | 1 | relopabiv | ⊢ Rel ⇝𝑟 |