Metamath Proof Explorer


Theorem rlimres2

Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimres2.1 ( 𝜑𝐴𝐵 )
rlimres2.2 ( 𝜑 → ( 𝑥𝐵𝐶 ) ⇝𝑟 𝐷 )
Assertion rlimres2 ( 𝜑 → ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 )

Proof

Step Hyp Ref Expression
1 rlimres2.1 ( 𝜑𝐴𝐵 )
2 rlimres2.2 ( 𝜑 → ( 𝑥𝐵𝐶 ) ⇝𝑟 𝐷 )
3 1 resmptd ( 𝜑 → ( ( 𝑥𝐵𝐶 ) ↾ 𝐴 ) = ( 𝑥𝐴𝐶 ) )
4 rlimres ( ( 𝑥𝐵𝐶 ) ⇝𝑟 𝐷 → ( ( 𝑥𝐵𝐶 ) ↾ 𝐴 ) ⇝𝑟 𝐷 )
5 2 4 syl ( 𝜑 → ( ( 𝑥𝐵𝐶 ) ↾ 𝐴 ) ⇝𝑟 𝐷 )
6 3 5 eqbrtrrd ( 𝜑 → ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 )