| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimsqz.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 2 |
|
rlimsqz.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 3 |
|
rlimsqz.l |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) |
| 4 |
|
rlimsqz.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 5 |
|
rlimsqz.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 6 |
|
rlimsqz.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐶 ) |
| 7 |
|
rlimsqz.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐷 ) |
| 8 |
1
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 9 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 10 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 11 |
4
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
| 12 |
5
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ∈ ℝ ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐷 ∈ ℝ ) |
| 14 |
11 12 13 6
|
lesub2dd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( 𝐷 − 𝐶 ) ≤ ( 𝐷 − 𝐵 ) ) |
| 15 |
12 13 7
|
abssuble0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) = ( 𝐷 − 𝐶 ) ) |
| 16 |
11 12 13 6 7
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐷 ) |
| 17 |
11 13 16
|
abssuble0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐵 − 𝐷 ) ) = ( 𝐷 − 𝐵 ) ) |
| 18 |
14 15 17
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) |
| 19 |
2 8 3 9 10 18
|
rlimsqzlem |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |