Metamath Proof Explorer


Theorem rlimsqzlem

Description: Lemma for rlimsqz and rlimsqz2 . (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 20-May-2016)

Ref Expression
Hypotheses rlimsqzlem.m ( 𝜑𝑀 ∈ ℝ )
rlimsqzlem.e ( 𝜑𝐸 ∈ ℂ )
rlimsqzlem.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐷 )
rlimsqzlem.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
rlimsqzlem.3 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
rlimsqzlem.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑀𝑥 ) ) → ( abs ‘ ( 𝐶𝐸 ) ) ≤ ( abs ‘ ( 𝐵𝐷 ) ) )
Assertion rlimsqzlem ( 𝜑 → ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐸 )

Proof

Step Hyp Ref Expression
1 rlimsqzlem.m ( 𝜑𝑀 ∈ ℝ )
2 rlimsqzlem.e ( 𝜑𝐸 ∈ ℂ )
3 rlimsqzlem.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐷 )
4 rlimsqzlem.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
5 rlimsqzlem.3 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
6 rlimsqzlem.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑀𝑥 ) ) → ( abs ‘ ( 𝐶𝐸 ) ) ≤ ( abs ‘ ( 𝐵𝐷 ) ) )
7 1 ad3antrrr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → 𝑀 ∈ ℝ )
8 1 ad2antrr ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) → 𝑀 ∈ ℝ )
9 elicopnf ( 𝑀 ∈ ℝ → ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑀𝑧 ) ) )
10 8 9 syl ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) → ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑀𝑧 ) ) )
11 10 simprbda ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → 𝑧 ∈ ℝ )
12 11 adantrr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → 𝑧 ∈ ℝ )
13 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
14 13 4 dmmptd ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
15 rlimss ( ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐷 → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ )
16 3 15 syl ( 𝜑 → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ )
17 14 16 eqsstrrd ( 𝜑𝐴 ⊆ ℝ )
18 17 adantr ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝐴 ⊆ ℝ )
19 18 sselda ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ )
20 19 adantr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → 𝑥 ∈ ℝ )
21 10 simplbda ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀𝑧 )
22 21 adantrr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → 𝑀𝑧 )
23 simprr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → 𝑧𝑥 )
24 7 12 20 22 23 letrd ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → 𝑀𝑥 )
25 6 anassrs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑀𝑥 ) → ( abs ‘ ( 𝐶𝐸 ) ) ≤ ( abs ‘ ( 𝐵𝐷 ) ) )
26 25 adantllr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ 𝑀𝑥 ) → ( abs ‘ ( 𝐶𝐸 ) ) ≤ ( abs ‘ ( 𝐵𝐷 ) ) )
27 24 26 syldan ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → ( abs ‘ ( 𝐶𝐸 ) ) ≤ ( abs ‘ ( 𝐵𝐷 ) ) )
28 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝐸 ∈ ℂ )
29 5 28 subcld ( ( 𝜑𝑥𝐴 ) → ( 𝐶𝐸 ) ∈ ℂ )
30 29 abscld ( ( 𝜑𝑥𝐴 ) → ( abs ‘ ( 𝐶𝐸 ) ) ∈ ℝ )
31 30 ad4ant13 ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → ( abs ‘ ( 𝐶𝐸 ) ) ∈ ℝ )
32 rlimcl ( ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐷𝐷 ∈ ℂ )
33 3 32 syl ( 𝜑𝐷 ∈ ℂ )
34 33 adantr ( ( 𝜑𝑥𝐴 ) → 𝐷 ∈ ℂ )
35 4 34 subcld ( ( 𝜑𝑥𝐴 ) → ( 𝐵𝐷 ) ∈ ℂ )
36 35 abscld ( ( 𝜑𝑥𝐴 ) → ( abs ‘ ( 𝐵𝐷 ) ) ∈ ℝ )
37 36 ad4ant13 ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → ( abs ‘ ( 𝐵𝐷 ) ) ∈ ℝ )
38 rpre ( 𝑦 ∈ ℝ+𝑦 ∈ ℝ )
39 38 ad3antlr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → 𝑦 ∈ ℝ )
40 lelttr ( ( ( abs ‘ ( 𝐶𝐸 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐵𝐷 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( abs ‘ ( 𝐶𝐸 ) ) ≤ ( abs ‘ ( 𝐵𝐷 ) ) ∧ ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) )
41 31 37 39 40 syl3anc ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → ( ( ( abs ‘ ( 𝐶𝐸 ) ) ≤ ( abs ‘ ( 𝐵𝐷 ) ) ∧ ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) )
42 27 41 mpand ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧𝑥 ) ) → ( ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) )
43 42 expr ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑥𝐴 ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑧𝑥 → ( ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) ) )
44 43 an32s ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑥𝐴 ) → ( 𝑧𝑥 → ( ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) ) )
45 44 a2d ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑥𝐴 ) → ( ( 𝑧𝑥 → ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 ) → ( 𝑧𝑥 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) ) )
46 45 ralimdva ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → ( ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 ) → ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) ) )
47 46 reximdva ( ( 𝜑𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) ) )
48 47 ralimdva ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) ) )
49 4 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵 ∈ ℂ )
50 49 17 33 1 rlim3 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐷 ↔ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐵𝐷 ) ) < 𝑦 ) ) )
51 5 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐶 ∈ ℂ )
52 51 17 2 1 rlim3 ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐸 ↔ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑧𝑥 → ( abs ‘ ( 𝐶𝐸 ) ) < 𝑦 ) ) )
53 48 50 52 3imtr4d ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐷 → ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐸 ) )
54 3 53 mpd ( 𝜑 → ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐸 )