Metamath Proof Explorer
Description: Domain closure of a function with a limit in the complex numbers.
(Contributed by Mario Carneiro, 16-Sep-2014)
|
|
Ref |
Expression |
|
Assertion |
rlimss |
⊢ ( 𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimpm |
⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 2 |
|
cnex |
⊢ ℂ ∈ V |
| 3 |
|
reex |
⊢ ℝ ∈ V |
| 4 |
2 3
|
elpm2 |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 5 |
4
|
simprbi |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ ) |
| 6 |
1 5
|
syl |
⊢ ( 𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ ) |