| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimadd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
rlimadd.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 3 |
|
rlimadd.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) |
| 4 |
|
rlimadd.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) |
| 5 |
1 3
|
rlimmptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 6 |
2 4
|
rlimmptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 7 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 9 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → 𝐸 ∈ ℂ ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 11 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → − : ( ℂ × ℂ ) ⟶ ℂ ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
| 14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐷 ∈ ℂ ) |
| 15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐸 ∈ ℂ ) |
| 16 |
|
subcn2 |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) → ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐷 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 − 𝑣 ) − ( 𝐷 − 𝐸 ) ) ) < 𝑦 ) ) |
| 17 |
13 14 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐷 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 − 𝑣 ) − ( 𝐷 − 𝐸 ) ) ) < 𝑦 ) ) |
| 18 |
5 6 8 10 3 4 12 17
|
rlimcn2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ⇝𝑟 ( 𝐷 − 𝐸 ) ) |