Description: Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rlm0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
2 | 1 | a1i | ⊢ ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ) |
3 | eqidd | ⊢ ( ⊤ → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) | |
4 | ssidd | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) | |
5 | 2 3 4 | sralmod0 | ⊢ ( ⊤ → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
6 | 5 | mptru | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |