Description: Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlm0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ) |
| 3 | eqidd | ⊢ ( ⊤ → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) | |
| 4 | ssidd | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) | |
| 5 | 2 3 4 | sralmod0 | ⊢ ( ⊤ → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 6 | 5 | mptru | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |