Metamath Proof Explorer


Theorem rlm0

Description: Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion rlm0 ( 0g𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
2 1 a1i ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) )
3 eqidd ( ⊤ → ( 0g𝑅 ) = ( 0g𝑅 ) )
4 ssidd ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
5 2 3 4 sralmod0 ( ⊤ → ( 0g𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) )
6 5 mptru ( 0g𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) )