Metamath Proof Explorer


Theorem rlmassa

Description: The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmassa ( 𝑅 ∈ CRing → ( ringLMod ‘ 𝑅 ) ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 2 subrgid ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
4 1 3 syl ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
5 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
6 5 sraassa ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) → ( ringLMod ‘ 𝑅 ) ∈ AssAlg )
7 4 6 mpdan ( 𝑅 ∈ CRing → ( ringLMod ‘ 𝑅 ) ∈ AssAlg )