Metamath Proof Explorer


Theorem rlmfn

Description: ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmfn ringLMod Fn V

Proof

Step Hyp Ref Expression
1 fvex ( ( subringAlg ‘ 𝑎 ) ‘ ( Base ‘ 𝑎 ) ) ∈ V
2 df-rgmod ringLMod = ( 𝑎 ∈ V ↦ ( ( subringAlg ‘ 𝑎 ) ‘ ( Base ‘ 𝑎 ) ) )
3 1 2 fnmpti ringLMod Fn V