Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 ) |
4 |
1 2 3
|
lsmfval |
⊢ ( 𝑅 ∈ 𝑉 → ( LSSum ‘ 𝑅 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
5 |
|
fvex |
⊢ ( ringLMod ‘ 𝑅 ) ∈ V |
6 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
7 |
|
rlmplusg |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) |
9 |
6 7 8
|
lsmfval |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ V → ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
10 |
5 9
|
mp1i |
⊢ ( 𝑅 ∈ 𝑉 → ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
11 |
4 10
|
eqtr4d |
⊢ ( 𝑅 ∈ 𝑉 → ( LSSum ‘ 𝑅 ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) ) |