Metamath Proof Explorer


Theorem rlmlsm

Description: Subgroup sum of the ring module. (Contributed by Thierry Arnoux, 9-Apr-2024)

Ref Expression
Assertion rlmlsm ( 𝑅𝑉 → ( LSSum ‘ 𝑅 ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( +g𝑅 ) = ( +g𝑅 )
3 eqid ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 )
4 1 2 3 lsmfval ( 𝑅𝑉 → ( LSSum ‘ 𝑅 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) ) )
5 fvex ( ringLMod ‘ 𝑅 ) ∈ V
6 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
7 rlmplusg ( +g𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) )
8 eqid ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) )
9 6 7 8 lsmfval ( ( ringLMod ‘ 𝑅 ) ∈ V → ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) ) )
10 5 9 mp1i ( 𝑅𝑉 → ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) ) )
11 4 10 eqtr4d ( 𝑅𝑉 → ( LSSum ‘ 𝑅 ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) )