Description: Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmmulr | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ ( ringLMod ‘ 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ) | 
| 3 | ssidd | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) | |
| 4 | 2 3 | sramulr | ⊢ ( ⊤ → ( .r ‘ 𝑅 ) = ( .r ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
| 5 | 4 | mptru | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ ( ringLMod ‘ 𝑅 ) ) |