Metamath Proof Explorer


Theorem rlmnlm

Description: The ring module over a normed ring is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion rlmnlm ( 𝑅 ∈ NrmRing → ( ringLMod ‘ 𝑅 ) ∈ NrmMod )

Proof

Step Hyp Ref Expression
1 nrgring ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 2 subrgid ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
4 1 3 syl ( 𝑅 ∈ NrmRing → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
5 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
6 5 sranlm ( ( 𝑅 ∈ NrmRing ∧ ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) → ( ringLMod ‘ 𝑅 ) ∈ NrmMod )
7 4 6 mpdan ( 𝑅 ∈ NrmRing → ( ringLMod ‘ 𝑅 ) ∈ NrmMod )