Metamath Proof Explorer


Theorem rlmnvc

Description: The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion rlmnvc ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ringLMod ‘ 𝑅 ) ∈ NrmVec )

Proof

Step Hyp Ref Expression
1 rlmnlm ( 𝑅 ∈ NrmRing → ( ringLMod ‘ 𝑅 ) ∈ NrmMod )
2 rlmlvec ( 𝑅 ∈ DivRing → ( ringLMod ‘ 𝑅 ) ∈ LVec )
3 isnvc ( ( ringLMod ‘ 𝑅 ) ∈ NrmVec ↔ ( ( ringLMod ‘ 𝑅 ) ∈ NrmMod ∧ ( ringLMod ‘ 𝑅 ) ∈ LVec ) )
4 3 biimpri ( ( ( ringLMod ‘ 𝑅 ) ∈ NrmMod ∧ ( ringLMod ‘ 𝑅 ) ∈ LVec ) → ( ringLMod ‘ 𝑅 ) ∈ NrmVec )
5 1 2 4 syl2an ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ringLMod ‘ 𝑅 ) ∈ NrmVec )