Metamath Proof Explorer


Theorem rlmsca

Description: Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmsca ( 𝑅𝑋𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 1 ressid ( 𝑅𝑋 → ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅 )
3 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
4 3 a1i ( 𝑅𝑋 → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) )
5 ssidd ( 𝑅𝑋 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
6 4 5 srasca ( 𝑅𝑋 → ( 𝑅s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) )
7 2 6 eqtr3d ( 𝑅𝑋𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) )