Description: Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rlmsca | ⊢ ( 𝑅 ∈ 𝑋 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
2 | 1 | ressid | ⊢ ( 𝑅 ∈ 𝑋 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
3 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
4 | 3 | a1i | ⊢ ( 𝑅 ∈ 𝑋 → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ) |
5 | ssidd | ⊢ ( 𝑅 ∈ 𝑋 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) | |
6 | 4 5 | srasca | ⊢ ( 𝑅 ∈ 𝑋 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
7 | 2 6 | eqtr3d | ⊢ ( 𝑅 ∈ 𝑋 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |