| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvi |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 3 |
2
|
ressid |
⊢ ( 𝑅 ∈ V → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 4 |
1 3
|
eqtr4d |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
| 5 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) |
| 6 |
|
reldmress |
⊢ Rel dom ↾s |
| 7 |
6
|
ovprc1 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ∅ ) |
| 8 |
5 7
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
| 9 |
4 8
|
pm2.61i |
⊢ ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) |
| 10 |
|
rlmval |
⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
| 11 |
10
|
a1i |
⊢ ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 |
|
ssidd |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 13 |
11 12
|
srasca |
⊢ ( ⊤ → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 14 |
13
|
mptru |
⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| 15 |
9 14
|
eqtri |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |