Metamath Proof Explorer


Theorem rlmsca2

Description: Scalars in the ring module. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Assertion rlmsca2 ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvi ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 2 ressid ( 𝑅 ∈ V → ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅 )
4 1 3 eqtr4d ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅s ( Base ‘ 𝑅 ) ) )
5 fvprc ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ )
6 reldmress Rel dom ↾s
7 6 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅s ( Base ‘ 𝑅 ) ) = ∅ )
8 5 7 eqtr4d ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅s ( Base ‘ 𝑅 ) ) )
9 4 8 pm2.61i ( I ‘ 𝑅 ) = ( 𝑅s ( Base ‘ 𝑅 ) )
10 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
11 10 a1i ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) )
12 ssidd ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
13 11 12 srasca ( ⊤ → ( 𝑅s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) )
14 13 mptru ( 𝑅s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) )
15 9 14 eqtri ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) )