Step |
Hyp |
Ref |
Expression |
1 |
|
fvi |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
2
|
ressid |
⊢ ( 𝑅 ∈ V → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
4 |
1 3
|
eqtr4d |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
5 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) |
6 |
|
reldmress |
⊢ Rel dom ↾s |
7 |
6
|
ovprc1 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ∅ ) |
8 |
5 7
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
9 |
4 8
|
pm2.61i |
⊢ ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) |
10 |
|
rlmval |
⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
11 |
10
|
a1i |
⊢ ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ) |
12 |
|
ssidd |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
13 |
11 12
|
srasca |
⊢ ( ⊤ → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
14 |
13
|
mptru |
⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
15 |
9 14
|
eqtri |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |