| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 1 2 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 4 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 5 | 1 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 6 |  | eqid | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )  =  ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 7 | 3 5 6 | plusffval | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 8 |  | rlmbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 9 |  | rlmsca2 | ⊢ (  I  ‘ 𝑅 )  =  ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 10 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 11 | 10 2 | strfvi | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ (  I  ‘ 𝑅 ) ) | 
						
							| 12 |  | eqid | ⊢ (  ·sf  ‘ ( ringLMod ‘ 𝑅 ) )  =  (  ·sf  ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 13 |  | rlmvsca | ⊢ ( .r ‘ 𝑅 )  =  (  ·𝑠  ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 14 | 8 9 11 12 13 | scaffval | ⊢ (  ·sf  ‘ ( ringLMod ‘ 𝑅 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 15 | 7 14 | eqtr4i | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )  =  (  ·sf  ‘ ( ringLMod ‘ 𝑅 ) ) |