Metamath Proof Explorer


Theorem rlmtopn

Description: Topology component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmtopn ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( ringLMod ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
2 1 a1i ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) )
3 ssidd ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
4 2 3 sratopn ( ⊤ → ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( ringLMod ‘ 𝑅 ) ) )
5 4 mptru ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( ringLMod ‘ 𝑅 ) )