Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑎 = 𝑊 → ( subringAlg ‘ 𝑎 ) = ( subringAlg ‘ 𝑊 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑎 = 𝑊 → ( Base ‘ 𝑎 ) = ( Base ‘ 𝑊 ) ) |
3 |
1 2
|
fveq12d |
⊢ ( 𝑎 = 𝑊 → ( ( subringAlg ‘ 𝑎 ) ‘ ( Base ‘ 𝑎 ) ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
4 |
|
df-rgmod |
⊢ ringLMod = ( 𝑎 ∈ V ↦ ( ( subringAlg ‘ 𝑎 ) ‘ ( Base ‘ 𝑎 ) ) ) |
5 |
|
fvex |
⊢ ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
7 |
|
0fv |
⊢ ( ∅ ‘ ( Base ‘ 𝑊 ) ) = ∅ |
8 |
7
|
eqcomi |
⊢ ∅ = ( ∅ ‘ ( Base ‘ 𝑊 ) ) |
9 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( ringLMod ‘ 𝑊 ) = ∅ ) |
10 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( subringAlg ‘ 𝑊 ) = ∅ ) |
11 |
10
|
fveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = ( ∅ ‘ ( Base ‘ 𝑊 ) ) ) |
12 |
8 9 11
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
13 |
6 12
|
pm2.61i |
⊢ ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) |