Metamath Proof Explorer


Theorem rlmvneg

Description: Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion rlmvneg ( invg𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eqidd ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) )
2 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
3 2 a1i ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) )
4 rlmplusg ( +g𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) )
5 4 a1i ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) )
6 5 oveqd ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑦 ) )
7 1 3 6 grpinvpropd ( ⊤ → ( invg𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) )
8 7 mptru ( invg𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) )