Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
2 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
3 |
2
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) ) |
4 |
|
rlmplusg |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
5 |
4
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
6 |
5
|
oveqd |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑦 ) ) |
7 |
1 3 6
|
grpinvpropd |
⊢ ( ⊤ → ( invg ‘ 𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ) |
8 |
7
|
mptru |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) |