Step |
Hyp |
Ref |
Expression |
1 |
|
rloc0g.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
2 |
|
rloc0g.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
rloc0g.3 |
⊢ 𝐿 = ( 𝑅 RLocal 𝑆 ) |
4 |
|
rloc0g.4 |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
5 |
|
rloc0g.5 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
rloc0g.6 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
7 |
|
rloc0g.o |
⊢ 𝑂 = [ 〈 0 , 1 〉 ] ∼ |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
8 9 10 3 4 5 6
|
rloccring |
⊢ ( 𝜑 → 𝐿 ∈ CRing ) |
12 |
11
|
crnggrpd |
⊢ ( 𝜑 → 𝐿 ∈ Grp ) |
13 |
5
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
14 |
8 1
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
17 |
16 2
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
18 |
17
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 1 ∈ 𝑆 ) |
19 |
6 18
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
20 |
15 19
|
opelxpd |
⊢ ( 𝜑 → 〈 0 , 1 〉 ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) ) |
21 |
4
|
ovexi |
⊢ ∼ ∈ V |
22 |
21
|
ecelqsi |
⊢ ( 〈 0 , 1 〉 ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) → [ 〈 0 , 1 〉 ] ∼ ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
23 |
20 22
|
syl |
⊢ ( 𝜑 → [ 〈 0 , 1 〉 ] ∼ ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
24 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
25 |
|
eqid |
⊢ ( ( Base ‘ 𝑅 ) × 𝑆 ) = ( ( Base ‘ 𝑅 ) × 𝑆 ) |
26 |
16 8
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
27 |
26
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
28 |
6 27
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
29 |
8 1 9 24 25 3 4 5 28
|
rlocbas |
⊢ ( 𝜑 → ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) = ( Base ‘ 𝐿 ) ) |
30 |
23 29
|
eleqtrd |
⊢ ( 𝜑 → [ 〈 0 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ) |
31 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
32 |
8 9 10 3 4 5 6 15 15 19 19 31
|
rlocaddval |
⊢ ( 𝜑 → ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ ) |
33 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
34 |
8 9 2 33 15
|
ringridmd |
⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑅 ) 1 ) = 0 ) |
35 |
34 34
|
oveq12d |
⊢ ( 𝜑 → ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) = ( 0 ( +g ‘ 𝑅 ) 0 ) ) |
36 |
8 10 1 13 15
|
grplidd |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
37 |
35 36
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) = 0 ) |
38 |
28 19
|
sseldd |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
39 |
8 9 2 33 38
|
ringlidmd |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝑅 ) 1 ) = 1 ) |
40 |
37 39
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 = 〈 0 , 1 〉 ) |
41 |
40
|
eceq1d |
⊢ ( 𝜑 → [ 〈 ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ = [ 〈 0 , 1 〉 ] ∼ ) |
42 |
32 41
|
eqtrd |
⊢ ( 𝜑 → ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 0 , 1 〉 ] ∼ ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
45 |
43 31 44
|
isgrpid2 |
⊢ ( 𝐿 ∈ Grp → ( ( [ 〈 0 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ∧ ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 0 , 1 〉 ] ∼ ) ↔ ( 0g ‘ 𝐿 ) = [ 〈 0 , 1 〉 ] ∼ ) ) |
46 |
45
|
biimpa |
⊢ ( ( 𝐿 ∈ Grp ∧ ( [ 〈 0 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ∧ ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 0 , 1 〉 ] ∼ ) ) → ( 0g ‘ 𝐿 ) = [ 〈 0 , 1 〉 ] ∼ ) |
47 |
12 30 42 46
|
syl12anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐿 ) = [ 〈 0 , 1 〉 ] ∼ ) |
48 |
7 47
|
eqtr4id |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝐿 ) ) |