Metamath Proof Explorer


Theorem rloc0g

Description: The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rloc0g.1 0 = ( 0g𝑅 )
rloc0g.2 1 = ( 1r𝑅 )
rloc0g.3 𝐿 = ( 𝑅 RLocal 𝑆 )
rloc0g.4 = ( 𝑅 ~RL 𝑆 )
rloc0g.5 ( 𝜑𝑅 ∈ CRing )
rloc0g.6 ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
rloc0g.o 𝑂 = [ ⟨ 0 , 1 ⟩ ]
Assertion rloc0g ( 𝜑𝑂 = ( 0g𝐿 ) )

Proof

Step Hyp Ref Expression
1 rloc0g.1 0 = ( 0g𝑅 )
2 rloc0g.2 1 = ( 1r𝑅 )
3 rloc0g.3 𝐿 = ( 𝑅 RLocal 𝑆 )
4 rloc0g.4 = ( 𝑅 ~RL 𝑆 )
5 rloc0g.5 ( 𝜑𝑅 ∈ CRing )
6 rloc0g.6 ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
7 rloc0g.o 𝑂 = [ ⟨ 0 , 1 ⟩ ]
8 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
9 eqid ( .r𝑅 ) = ( .r𝑅 )
10 eqid ( +g𝑅 ) = ( +g𝑅 )
11 8 9 10 3 4 5 6 rloccring ( 𝜑𝐿 ∈ CRing )
12 11 crnggrpd ( 𝜑𝐿 ∈ Grp )
13 5 crnggrpd ( 𝜑𝑅 ∈ Grp )
14 8 1 grpidcl ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) )
15 13 14 syl ( 𝜑0 ∈ ( Base ‘ 𝑅 ) )
16 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
17 16 2 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
18 17 subm0cl ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 1𝑆 )
19 6 18 syl ( 𝜑1𝑆 )
20 15 19 opelxpd ( 𝜑 → ⟨ 0 , 1 ⟩ ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) )
21 4 ovexi ∈ V
22 21 ecelqsi ( ⟨ 0 , 1 ⟩ ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) → [ ⟨ 0 , 1 ⟩ ] ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ) )
23 20 22 syl ( 𝜑 → [ ⟨ 0 , 1 ⟩ ] ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ) )
24 eqid ( -g𝑅 ) = ( -g𝑅 )
25 eqid ( ( Base ‘ 𝑅 ) × 𝑆 ) = ( ( Base ‘ 𝑅 ) × 𝑆 )
26 16 8 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
27 26 submss ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) )
28 6 27 syl ( 𝜑𝑆 ⊆ ( Base ‘ 𝑅 ) )
29 8 1 9 24 25 3 4 5 28 rlocbas ( 𝜑 → ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ) = ( Base ‘ 𝐿 ) )
30 23 29 eleqtrd ( 𝜑 → [ ⟨ 0 , 1 ⟩ ] ∈ ( Base ‘ 𝐿 ) )
31 eqid ( +g𝐿 ) = ( +g𝐿 )
32 8 9 10 3 4 5 6 15 15 19 19 31 rlocaddval ( 𝜑 → ( [ ⟨ 0 , 1 ⟩ ] ( +g𝐿 ) [ ⟨ 0 , 1 ⟩ ] ) = [ ⟨ ( ( 0 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 0 ( .r𝑅 ) 1 ) ) , ( 1 ( .r𝑅 ) 1 ) ⟩ ] )
33 5 crngringd ( 𝜑𝑅 ∈ Ring )
34 8 9 2 33 15 ringridmd ( 𝜑 → ( 0 ( .r𝑅 ) 1 ) = 0 )
35 34 34 oveq12d ( 𝜑 → ( ( 0 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 0 ( .r𝑅 ) 1 ) ) = ( 0 ( +g𝑅 ) 0 ) )
36 8 10 1 13 15 grplidd ( 𝜑 → ( 0 ( +g𝑅 ) 0 ) = 0 )
37 35 36 eqtrd ( 𝜑 → ( ( 0 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 0 ( .r𝑅 ) 1 ) ) = 0 )
38 28 19 sseldd ( 𝜑1 ∈ ( Base ‘ 𝑅 ) )
39 8 9 2 33 38 ringlidmd ( 𝜑 → ( 1 ( .r𝑅 ) 1 ) = 1 )
40 37 39 opeq12d ( 𝜑 → ⟨ ( ( 0 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 0 ( .r𝑅 ) 1 ) ) , ( 1 ( .r𝑅 ) 1 ) ⟩ = ⟨ 0 , 1 ⟩ )
41 40 eceq1d ( 𝜑 → [ ⟨ ( ( 0 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 0 ( .r𝑅 ) 1 ) ) , ( 1 ( .r𝑅 ) 1 ) ⟩ ] = [ ⟨ 0 , 1 ⟩ ] )
42 32 41 eqtrd ( 𝜑 → ( [ ⟨ 0 , 1 ⟩ ] ( +g𝐿 ) [ ⟨ 0 , 1 ⟩ ] ) = [ ⟨ 0 , 1 ⟩ ] )
43 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
44 eqid ( 0g𝐿 ) = ( 0g𝐿 )
45 43 31 44 isgrpid2 ( 𝐿 ∈ Grp → ( ( [ ⟨ 0 , 1 ⟩ ] ∈ ( Base ‘ 𝐿 ) ∧ ( [ ⟨ 0 , 1 ⟩ ] ( +g𝐿 ) [ ⟨ 0 , 1 ⟩ ] ) = [ ⟨ 0 , 1 ⟩ ] ) ↔ ( 0g𝐿 ) = [ ⟨ 0 , 1 ⟩ ] ) )
46 45 biimpa ( ( 𝐿 ∈ Grp ∧ ( [ ⟨ 0 , 1 ⟩ ] ∈ ( Base ‘ 𝐿 ) ∧ ( [ ⟨ 0 , 1 ⟩ ] ( +g𝐿 ) [ ⟨ 0 , 1 ⟩ ] ) = [ ⟨ 0 , 1 ⟩ ] ) ) → ( 0g𝐿 ) = [ ⟨ 0 , 1 ⟩ ] )
47 12 30 42 46 syl12anc ( 𝜑 → ( 0g𝐿 ) = [ ⟨ 0 , 1 ⟩ ] )
48 7 47 eqtr4id ( 𝜑𝑂 = ( 0g𝐿 ) )