Metamath Proof Explorer


Theorem rlocaddval

Description: Value of the addition in the ring localization, given two representatives. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocaddval.1 𝐵 = ( Base ‘ 𝑅 )
rlocaddval.2 · = ( .r𝑅 )
rlocaddval.3 + = ( +g𝑅 )
rlocaddval.4 𝐿 = ( 𝑅 RLocal 𝑆 )
rlocaddval.5 = ( 𝑅 ~RL 𝑆 )
rlocaddval.r ( 𝜑𝑅 ∈ CRing )
rlocaddval.s ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
rlocaddval.6 ( 𝜑𝐸𝐵 )
rlocaddval.7 ( 𝜑𝐹𝐵 )
rlocaddval.8 ( 𝜑𝐺𝑆 )
rlocaddval.9 ( 𝜑𝐻𝑆 )
rlocaddval.10 = ( +g𝐿 )
Assertion rlocaddval ( 𝜑 → ( [ ⟨ 𝐸 , 𝐺 ⟩ ] [ ⟨ 𝐹 , 𝐻 ⟩ ] ) = [ ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ ] )

Proof

Step Hyp Ref Expression
1 rlocaddval.1 𝐵 = ( Base ‘ 𝑅 )
2 rlocaddval.2 · = ( .r𝑅 )
3 rlocaddval.3 + = ( +g𝑅 )
4 rlocaddval.4 𝐿 = ( 𝑅 RLocal 𝑆 )
5 rlocaddval.5 = ( 𝑅 ~RL 𝑆 )
6 rlocaddval.r ( 𝜑𝑅 ∈ CRing )
7 rlocaddval.s ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
8 rlocaddval.6 ( 𝜑𝐸𝐵 )
9 rlocaddval.7 ( 𝜑𝐹𝐵 )
10 rlocaddval.8 ( 𝜑𝐺𝑆 )
11 rlocaddval.9 ( 𝜑𝐻𝑆 )
12 rlocaddval.10 = ( +g𝐿 )
13 8 10 opelxpd ( 𝜑 → ⟨ 𝐸 , 𝐺 ⟩ ∈ ( 𝐵 × 𝑆 ) )
14 9 11 opelxpd ( 𝜑 → ⟨ 𝐹 , 𝐻 ⟩ ∈ ( 𝐵 × 𝑆 ) )
15 eqid ( 0g𝑅 ) = ( 0g𝑅 )
16 eqid ( -g𝑅 ) = ( -g𝑅 )
17 eqid ( le ‘ 𝑅 ) = ( le ‘ 𝑅 )
18 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
19 eqid ( Base ‘ ( Scalar ‘ 𝑅 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) )
20 eqid ( ·𝑠𝑅 ) = ( ·𝑠𝑅 )
21 eqid ( 𝐵 × 𝑆 ) = ( 𝐵 × 𝑆 )
22 eqid ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑅 )
23 eqid ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 )
24 eqid ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) = ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
25 eqid ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) = ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
26 eqid ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) = ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ )
27 eqid { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) }
28 eqid ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
29 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
30 29 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
31 30 submss ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆𝐵 )
32 7 31 syl ( 𝜑𝑆𝐵 )
33 1 15 2 16 3 17 18 19 20 21 5 22 23 24 25 26 27 28 6 32 rlocval ( 𝜑 → ( 𝑅 RLocal 𝑆 ) = ( ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ) )
34 4 33 eqtrid ( 𝜑𝐿 = ( ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ) )
35 eqidd ( 𝜑 → ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) )
36 eqid ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
37 36 imasvalstr ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) Struct ⟨ 1 , 1 2 ⟩
38 baseid Base = Slot ( Base ‘ ndx )
39 snsstp1 { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ }
40 ssun1 { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } )
41 ssun1 ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
42 40 41 sstri { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
43 39 42 sstri { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
44 1 fvexi 𝐵 ∈ V
45 44 a1i ( 𝜑𝐵 ∈ V )
46 45 7 xpexd ( 𝜑 → ( 𝐵 × 𝑆 ) ∈ V )
47 eqid ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) = ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) )
48 35 37 38 43 46 47 strfv3 ( 𝜑 → ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) = ( 𝐵 × 𝑆 ) )
49 48 eqcomd ( 𝜑 → ( 𝐵 × 𝑆 ) = ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) )
50 eqid ( 1r𝑅 ) = ( 1r𝑅 )
51 1 15 50 2 16 21 5 6 7 erler ( 𝜑 Er ( 𝐵 × 𝑆 ) )
52 tpex { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∈ V
53 tpex { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ∈ V
54 52 53 unex ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∈ V
55 tpex { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ∈ V
56 54 55 unex ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ∈ V
57 56 a1i ( 𝜑 → ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ∈ V )
58 32 ad2antrr ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → 𝑆𝐵 )
59 58 ad2antrr ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) → 𝑆𝐵 )
60 59 ad2antrr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑆𝐵 )
61 eqidd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ = ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ )
62 eqidd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ = ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
63 6 crnggrpd ( 𝜑𝑅 ∈ Grp )
64 63 ad6antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑅 ∈ Grp )
65 6 crngringd ( 𝜑𝑅 ∈ Ring )
66 65 ad6antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑅 ∈ Ring )
67 simplr ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → 𝑢 𝑝 )
68 1 5 58 67 erlcl1 ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → 𝑢 ∈ ( 𝐵 × 𝑆 ) )
69 68 ad4antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑢 ∈ ( 𝐵 × 𝑆 ) )
70 xp1st ( 𝑢 ∈ ( 𝐵 × 𝑆 ) → ( 1st𝑢 ) ∈ 𝐵 )
71 69 70 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 1st𝑢 ) ∈ 𝐵 )
72 simpr ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → 𝑣 𝑞 )
73 1 5 58 72 erlcl1 ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → 𝑣 ∈ ( 𝐵 × 𝑆 ) )
74 73 ad4antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑣 ∈ ( 𝐵 × 𝑆 ) )
75 xp2nd ( 𝑣 ∈ ( 𝐵 × 𝑆 ) → ( 2nd𝑣 ) ∈ 𝑆 )
76 74 75 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑣 ) ∈ 𝑆 )
77 60 76 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑣 ) ∈ 𝐵 )
78 1 2 66 71 77 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) ∈ 𝐵 )
79 xp1st ( 𝑣 ∈ ( 𝐵 × 𝑆 ) → ( 1st𝑣 ) ∈ 𝐵 )
80 74 79 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 1st𝑣 ) ∈ 𝐵 )
81 xp2nd ( 𝑢 ∈ ( 𝐵 × 𝑆 ) → ( 2nd𝑢 ) ∈ 𝑆 )
82 69 81 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑢 ) ∈ 𝑆 )
83 60 82 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑢 ) ∈ 𝐵 )
84 1 2 66 80 83 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ∈ 𝐵 )
85 1 3 64 78 84 grpcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) ∈ 𝐵 )
86 1 5 58 67 erlcl2 ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → 𝑝 ∈ ( 𝐵 × 𝑆 ) )
87 86 ad4antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑝 ∈ ( 𝐵 × 𝑆 ) )
88 xp1st ( 𝑝 ∈ ( 𝐵 × 𝑆 ) → ( 1st𝑝 ) ∈ 𝐵 )
89 87 88 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 1st𝑝 ) ∈ 𝐵 )
90 1 5 58 72 erlcl2 ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → 𝑞 ∈ ( 𝐵 × 𝑆 ) )
91 90 ad4antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑞 ∈ ( 𝐵 × 𝑆 ) )
92 xp2nd ( 𝑞 ∈ ( 𝐵 × 𝑆 ) → ( 2nd𝑞 ) ∈ 𝑆 )
93 91 92 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑞 ) ∈ 𝑆 )
94 60 93 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑞 ) ∈ 𝐵 )
95 1 2 66 89 94 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝐵 )
96 xp1st ( 𝑞 ∈ ( 𝐵 × 𝑆 ) → ( 1st𝑞 ) ∈ 𝐵 )
97 91 96 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 1st𝑞 ) ∈ 𝐵 )
98 xp2nd ( 𝑝 ∈ ( 𝐵 × 𝑆 ) → ( 2nd𝑝 ) ∈ 𝑆 )
99 87 98 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑝 ) ∈ 𝑆 )
100 60 99 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd𝑝 ) ∈ 𝐵 )
101 1 2 66 97 100 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ∈ 𝐵 )
102 1 3 64 95 101 grpcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) ∈ 𝐵 )
103 7 ad6antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
104 29 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
105 104 submcl ( ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∧ ( 2nd𝑢 ) ∈ 𝑆 ∧ ( 2nd𝑣 ) ∈ 𝑆 ) → ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ∈ 𝑆 )
106 103 82 76 105 syl3anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ∈ 𝑆 )
107 104 submcl ( ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∧ ( 2nd𝑝 ) ∈ 𝑆 ∧ ( 2nd𝑞 ) ∈ 𝑆 ) → ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝑆 )
108 103 99 93 107 syl3anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝑆 )
109 simp-4r ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑓𝑆 )
110 simplr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑔𝑆 )
111 104 submcl ( ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∧ 𝑓𝑆𝑔𝑆 ) → ( 𝑓 · 𝑔 ) ∈ 𝑆 )
112 103 109 110 111 syl3anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · 𝑔 ) ∈ 𝑆 )
113 60 108 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝐵 )
114 1 3 2 ringdir ( ( 𝑅 ∈ Ring ∧ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) ∈ 𝐵 ∧ ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ∈ 𝐵 ∧ ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝐵 ) ) → ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) = ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) )
115 66 78 84 113 114 syl13anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) = ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) )
116 60 106 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ∈ 𝐵 )
117 1 3 2 ringdir ( ( 𝑅 ∈ Ring ∧ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝐵 ∧ ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ∈ 𝐵 ∧ ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ∈ 𝐵 ) ) → ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) = ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) )
118 66 95 101 116 117 syl13anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) = ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) )
119 115 118 oveq12d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ( -g𝑅 ) ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) = ( ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) )
120 119 oveq2d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ( -g𝑅 ) ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( ( 𝑓 · 𝑔 ) · ( ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) )
121 60 109 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑓𝐵 )
122 60 110 sseldd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑔𝐵 )
123 1 2 66 121 122 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · 𝑔 ) ∈ 𝐵 )
124 1 2 66 78 113 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ∈ 𝐵 )
125 1 2 66 84 113 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ∈ 𝐵 )
126 1 3 64 124 125 grpcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ∈ 𝐵 )
127 1 2 66 95 116 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ∈ 𝐵 )
128 1 2 66 101 116 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ∈ 𝐵 )
129 1 3 64 127 128 grpcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ∈ 𝐵 )
130 1 2 16 66 123 126 129 ringsubdi ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) = ( ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) )
131 1 3 2 ringdi ( ( 𝑅 ∈ Ring ∧ ( ( 𝑓 · 𝑔 ) ∈ 𝐵 ∧ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ∈ 𝐵 ∧ ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ∈ 𝐵 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) = ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) )
132 66 123 124 125 131 syl13anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) = ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) )
133 1 3 2 ringdi ( ( 𝑅 ∈ Ring ∧ ( ( 𝑓 · 𝑔 ) ∈ 𝐵 ∧ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ∈ 𝐵 ∧ ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ∈ 𝐵 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) )
134 66 123 127 128 133 syl13anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) )
135 132 134 oveq12d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) = ( ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) ( -g𝑅 ) ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) )
136 66 ringabld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → 𝑅 ∈ Abel )
137 1 2 66 123 124 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ∈ 𝐵 )
138 1 2 66 123 125 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ∈ 𝐵 )
139 1 2 66 123 127 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ∈ 𝐵 )
140 1 2 66 123 128 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ∈ 𝐵 )
141 1 3 16 ablsub4 ( ( 𝑅 ∈ Abel ∧ ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ∈ 𝐵 ∧ ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ∈ 𝐵 ) ∧ ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ∈ 𝐵 ∧ ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ∈ 𝐵 ) ) → ( ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) ( -g𝑅 ) ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) = ( ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) + ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) )
142 136 137 138 139 140 141 syl122anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) ( -g𝑅 ) ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) + ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) = ( ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) + ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) )
143 29 crngmgp ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
144 6 143 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
145 144 ad6antr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
146 30 104 145 121 122 71 77 100 94 cmn246135 ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) = ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ) )
147 30 104 145 121 122 89 94 83 77 cmn246135 ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) = ( ( 𝑔 · ( ( 2nd𝑞 ) · ( 2nd𝑣 ) ) ) · ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) )
148 30 104 cmncom ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( 2nd𝑣 ) ∈ 𝐵 ∧ ( 2nd𝑞 ) ∈ 𝐵 ) → ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) = ( ( 2nd𝑞 ) · ( 2nd𝑣 ) ) )
149 145 77 94 148 syl3anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) = ( ( 2nd𝑞 ) · ( 2nd𝑣 ) ) )
150 149 oveq2d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) = ( 𝑔 · ( ( 2nd𝑞 ) · ( 2nd𝑣 ) ) ) )
151 150 oveq1d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( ( 𝑔 · ( ( 2nd𝑞 ) · ( 2nd𝑣 ) ) ) · ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) )
152 147 151 eqtr4d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) = ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) )
153 146 152 oveq12d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ) ( -g𝑅 ) ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) ) )
154 1 2 66 71 100 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ∈ 𝐵 )
155 1 2 66 89 83 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ∈ 𝐵 )
156 1 2 16 66 121 154 155 ringsubdi ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ( -g𝑅 ) ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) )
157 simpllr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) )
158 156 157 eqtr3d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ( -g𝑅 ) ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) )
159 158 oveq2d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ( -g𝑅 ) ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) ) = ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 0g𝑅 ) ) )
160 1 2 66 77 94 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ∈ 𝐵 )
161 1 2 66 122 160 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) ∈ 𝐵 )
162 1 2 66 121 154 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ∈ 𝐵 )
163 1 2 66 121 155 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ∈ 𝐵 )
164 1 2 16 66 161 162 163 ringsubdi ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ( -g𝑅 ) ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) ) = ( ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ) ( -g𝑅 ) ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) ) )
165 1 2 15 66 161 ringrzd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 0g𝑅 ) ) = ( 0g𝑅 ) )
166 159 164 165 3eqtr3d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ) ) ( -g𝑅 ) ( ( 𝑔 · ( ( 2nd𝑣 ) · ( 2nd𝑞 ) ) ) · ( 𝑓 · ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) ) = ( 0g𝑅 ) )
167 153 166 eqtrd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( 0g𝑅 ) )
168 30 104 145 121 122 80 83 100 94 cmn145236 ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) = ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ) )
169 30 104 145 121 122 97 100 83 77 cmn145236 ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) = ( ( 𝑓 · ( ( 2nd𝑝 ) · ( 2nd𝑢 ) ) ) · ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) )
170 30 104 cmncom ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( 2nd𝑝 ) ∈ 𝐵 ∧ ( 2nd𝑢 ) ∈ 𝐵 ) → ( ( 2nd𝑝 ) · ( 2nd𝑢 ) ) = ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) )
171 145 100 83 170 syl3anc ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑝 ) · ( 2nd𝑢 ) ) = ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) )
172 171 oveq2d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · ( ( 2nd𝑝 ) · ( 2nd𝑢 ) ) ) = ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) )
173 172 oveq1d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · ( ( 2nd𝑝 ) · ( 2nd𝑢 ) ) ) · ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) )
174 169 173 eqtrd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) = ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) )
175 168 174 oveq12d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) ) )
176 1 2 66 80 94 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ∈ 𝐵 )
177 1 2 66 97 77 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ∈ 𝐵 )
178 1 2 16 66 122 176 177 ringsubdi ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ( -g𝑅 ) ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) )
179 simpr ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) )
180 178 179 eqtr3d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ( -g𝑅 ) ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) )
181 180 oveq2d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ( -g𝑅 ) ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) ) = ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 0g𝑅 ) ) )
182 1 2 66 83 100 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ∈ 𝐵 )
183 1 2 66 121 182 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) ∈ 𝐵 )
184 1 2 66 122 176 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ∈ 𝐵 )
185 1 2 66 122 177 ringcld ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ∈ 𝐵 )
186 1 2 16 66 183 184 185 ringsubdi ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ( -g𝑅 ) ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) ) = ( ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) ) )
187 1 2 15 66 183 ringrzd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 0g𝑅 ) ) = ( 0g𝑅 ) )
188 181 186 187 3eqtr3d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · ( ( 2nd𝑢 ) · ( 2nd𝑝 ) ) ) · ( 𝑔 · ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) ) = ( 0g𝑅 ) )
189 175 188 eqtrd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( 0g𝑅 ) )
190 167 189 oveq12d ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) + ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) = ( ( 0g𝑅 ) + ( 0g𝑅 ) ) )
191 1 15 grpidcl ( 𝑅 ∈ Grp → ( 0g𝑅 ) ∈ 𝐵 )
192 64 191 syl ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( 0g𝑅 ) ∈ 𝐵 )
193 1 3 15 64 192 grplidd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 0g𝑅 ) + ( 0g𝑅 ) ) = ( 0g𝑅 ) )
194 190 193 eqtrd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) + ( ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) = ( 0g𝑅 ) )
195 135 142 194 3eqtrd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) + ( ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ) ) ( -g𝑅 ) ( ( 𝑓 · 𝑔 ) · ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) + ( ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) ) = ( 0g𝑅 ) )
196 120 130 195 3eqtrd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ( ( 𝑓 · 𝑔 ) · ( ( ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) · ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ) ( -g𝑅 ) ( ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) · ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ) ) ) = ( 0g𝑅 ) )
197 1 5 60 15 2 16 61 62 85 102 106 108 112 196 erlbrd ( ( ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) ∧ 𝑔𝑆 ) ∧ ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) ) → ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
198 72 ad2antrr ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) → 𝑣 𝑞 )
199 1 5 59 15 2 16 198 erldi ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) → ∃ 𝑔𝑆 ( 𝑔 · ( ( ( 1st𝑣 ) · ( 2nd𝑞 ) ) ( -g𝑅 ) ( ( 1st𝑞 ) · ( 2nd𝑣 ) ) ) ) = ( 0g𝑅 ) )
200 197 199 r19.29a ( ( ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) ∧ 𝑓𝑆 ) ∧ ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) ) → ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
201 1 5 58 15 2 16 67 erldi ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ∃ 𝑓𝑆 ( 𝑓 · ( ( ( 1st𝑢 ) · ( 2nd𝑝 ) ) ( -g𝑅 ) ( ( 1st𝑝 ) · ( 2nd𝑢 ) ) ) ) = ( 0g𝑅 ) )
202 200 201 r19.29a ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
203 plusgid +g = Slot ( +g ‘ ndx )
204 snsstp2 { ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ }
205 204 42 sstri { ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
206 24 mpoexg ( ( ( 𝐵 × 𝑆 ) ∈ V ∧ ( 𝐵 × 𝑆 ) ∈ V ) → ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ∈ V )
207 46 46 206 syl2anc ( 𝜑 → ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ∈ V )
208 eqid ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) = ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) )
209 35 37 203 205 207 208 strfv3 ( 𝜑 → ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) = ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) )
210 209 ad2antrr ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) = ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) )
211 210 oveqd ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( 𝑢 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑣 ) = ( 𝑢 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑣 ) )
212 opex ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ ∈ V
213 212 a1i ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ ∈ V )
214 simpl ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → 𝑎 = 𝑢 )
215 214 fveq2d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( 1st𝑎 ) = ( 1st𝑢 ) )
216 simpr ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → 𝑏 = 𝑣 )
217 216 fveq2d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( 2nd𝑏 ) = ( 2nd𝑣 ) )
218 215 217 oveq12d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) )
219 216 fveq2d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( 1st𝑏 ) = ( 1st𝑣 ) )
220 214 fveq2d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( 2nd𝑎 ) = ( 2nd𝑢 ) )
221 219 220 oveq12d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) )
222 218 221 oveq12d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) )
223 220 217 oveq12d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) = ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) )
224 222 223 opeq12d ( ( 𝑎 = 𝑢𝑏 = 𝑣 ) → ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ = ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ )
225 224 24 ovmpoga ( ( 𝑢 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑣 ∈ ( 𝐵 × 𝑆 ) ∧ ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ ∈ V ) → ( 𝑢 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑣 ) = ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ )
226 68 73 213 225 syl3anc ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( 𝑢 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑣 ) = ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ )
227 211 226 eqtrd ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( 𝑢 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑣 ) = ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ )
228 210 oveqd ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) = ( 𝑝 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑞 ) )
229 opex ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ ∈ V
230 229 a1i ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ ∈ V )
231 simpl ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → 𝑎 = 𝑝 )
232 231 fveq2d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( 1st𝑎 ) = ( 1st𝑝 ) )
233 simpr ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → 𝑏 = 𝑞 )
234 233 fveq2d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( 2nd𝑏 ) = ( 2nd𝑞 ) )
235 232 234 oveq12d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) )
236 233 fveq2d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( 1st𝑏 ) = ( 1st𝑞 ) )
237 231 fveq2d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( 2nd𝑎 ) = ( 2nd𝑝 ) )
238 236 237 oveq12d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) )
239 235 238 oveq12d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) )
240 237 234 oveq12d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) = ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) )
241 239 240 opeq12d ( ( 𝑎 = 𝑝𝑏 = 𝑞 ) → ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ = ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
242 241 24 ovmpoga ( ( 𝑝 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ∧ ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ ∈ V ) → ( 𝑝 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑞 ) = ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
243 86 90 230 242 syl3anc ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( 𝑝 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑞 ) = ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
244 228 243 eqtrd ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) = ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
245 227 244 breq12d ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( ( 𝑢 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑣 ) ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) ↔ ⟨ ( ( ( 1st𝑢 ) · ( 2nd𝑣 ) ) + ( ( 1st𝑣 ) · ( 2nd𝑢 ) ) ) , ( ( 2nd𝑢 ) · ( 2nd𝑣 ) ) ⟩ ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ ) )
246 202 245 mpbird ( ( ( 𝜑𝑢 𝑝 ) ∧ 𝑣 𝑞 ) → ( 𝑢 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑣 ) ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) )
247 246 anasss ( ( 𝜑 ∧ ( 𝑢 𝑝𝑣 𝑞 ) ) → ( 𝑢 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑣 ) ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) )
248 247 ex ( 𝜑 → ( ( 𝑢 𝑝𝑣 𝑞 ) → ( 𝑢 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑣 ) ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) ) )
249 209 oveqd ( 𝜑 → ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) = ( 𝑝 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑞 ) )
250 249 ad2antrr ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) = ( 𝑝 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑞 ) )
251 simplr ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → 𝑝 ∈ ( 𝐵 × 𝑆 ) )
252 simpr ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → 𝑞 ∈ ( 𝐵 × 𝑆 ) )
253 229 a1i ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ ∈ V )
254 251 252 253 242 syl3anc ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 𝑝 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑞 ) = ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ )
255 63 ad2antrr ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → 𝑅 ∈ Grp )
256 65 ad2antrr ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → 𝑅 ∈ Ring )
257 251 88 syl ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 1st𝑝 ) ∈ 𝐵 )
258 32 ad2antrr ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → 𝑆𝐵 )
259 252 92 syl ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 2nd𝑞 ) ∈ 𝑆 )
260 258 259 sseldd ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 2nd𝑞 ) ∈ 𝐵 )
261 1 2 256 257 260 ringcld ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝐵 )
262 252 96 syl ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 1st𝑞 ) ∈ 𝐵 )
263 251 98 syl ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 2nd𝑝 ) ∈ 𝑆 )
264 258 263 sseldd ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 2nd𝑝 ) ∈ 𝐵 )
265 1 2 256 262 264 ringcld ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ∈ 𝐵 )
266 1 3 255 261 265 grpcld ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) ∈ 𝐵 )
267 7 ad2antrr ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
268 267 263 259 107 syl3anc ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ∈ 𝑆 )
269 266 268 opelxpd ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ⟨ ( ( ( 1st𝑝 ) · ( 2nd𝑞 ) ) + ( ( 1st𝑞 ) · ( 2nd𝑝 ) ) ) , ( ( 2nd𝑝 ) · ( 2nd𝑞 ) ) ⟩ ∈ ( 𝐵 × 𝑆 ) )
270 254 269 eqeltrd ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 𝑝 ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) 𝑞 ) ∈ ( 𝐵 × 𝑆 ) )
271 250 270 eqeltrd ( ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) → ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) ∈ ( 𝐵 × 𝑆 ) )
272 271 anasss ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑞 ∈ ( 𝐵 × 𝑆 ) ) ) → ( 𝑝 ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) 𝑞 ) ∈ ( 𝐵 × 𝑆 ) )
273 34 49 51 57 248 272 208 12 qusaddval ( ( 𝜑 ∧ ⟨ 𝐸 , 𝐺 ⟩ ∈ ( 𝐵 × 𝑆 ) ∧ ⟨ 𝐹 , 𝐻 ⟩ ∈ ( 𝐵 × 𝑆 ) ) → ( [ ⟨ 𝐸 , 𝐺 ⟩ ] [ ⟨ 𝐹 , 𝐻 ⟩ ] ) = [ ( ⟨ 𝐸 , 𝐺 ⟩ ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) ⟨ 𝐹 , 𝐻 ⟩ ) ] )
274 13 14 273 mpd3an23 ( 𝜑 → ( [ ⟨ 𝐸 , 𝐺 ⟩ ] [ ⟨ 𝐹 , 𝐻 ⟩ ] ) = [ ( ⟨ 𝐸 , 𝐺 ⟩ ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) ⟨ 𝐹 , 𝐻 ⟩ ) ] )
275 209 oveqd ( 𝜑 → ( ⟨ 𝐸 , 𝐺 ⟩ ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) ⟨ 𝐹 , 𝐻 ⟩ ) = ( ⟨ 𝐸 , 𝐺 ⟩ ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟨ 𝐹 , 𝐻 ⟩ ) )
276 24 a1i ( 𝜑 → ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) = ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) )
277 simprl ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ )
278 277 fveq2d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 1st𝑎 ) = ( 1st ‘ ⟨ 𝐸 , 𝐺 ⟩ ) )
279 8 adantr ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → 𝐸𝐵 )
280 10 adantr ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → 𝐺𝑆 )
281 op1stg ( ( 𝐸𝐵𝐺𝑆 ) → ( 1st ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐸 )
282 279 280 281 syl2anc ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 1st ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐸 )
283 278 282 eqtrd ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 1st𝑎 ) = 𝐸 )
284 simprr ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ )
285 284 fveq2d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 2nd𝑏 ) = ( 2nd ‘ ⟨ 𝐹 , 𝐻 ⟩ ) )
286 9 adantr ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → 𝐹𝐵 )
287 11 adantr ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → 𝐻𝑆 )
288 op2ndg ( ( 𝐹𝐵𝐻𝑆 ) → ( 2nd ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐻 )
289 286 287 288 syl2anc ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 2nd ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐻 )
290 285 289 eqtrd ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 2nd𝑏 ) = 𝐻 )
291 283 290 oveq12d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( 𝐸 · 𝐻 ) )
292 284 fveq2d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 1st𝑏 ) = ( 1st ‘ ⟨ 𝐹 , 𝐻 ⟩ ) )
293 op1stg ( ( 𝐹𝐵𝐻𝑆 ) → ( 1st ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐹 )
294 286 287 293 syl2anc ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 1st ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐹 )
295 292 294 eqtrd ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 1st𝑏 ) = 𝐹 )
296 277 fveq2d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 2nd𝑎 ) = ( 2nd ‘ ⟨ 𝐸 , 𝐺 ⟩ ) )
297 op2ndg ( ( 𝐸𝐵𝐺𝑆 ) → ( 2nd ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐺 )
298 279 280 297 syl2anc ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 2nd ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐺 )
299 296 298 eqtrd ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( 2nd𝑎 ) = 𝐺 )
300 295 299 oveq12d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( 𝐹 · 𝐺 ) )
301 291 300 oveq12d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) )
302 299 290 oveq12d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) = ( 𝐺 · 𝐻 ) )
303 301 302 opeq12d ( ( 𝜑 ∧ ( 𝑎 = ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝑏 = ⟨ 𝐹 , 𝐻 ⟩ ) ) → ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ = ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ )
304 opex ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ ∈ V
305 304 a1i ( 𝜑 → ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ ∈ V )
306 276 303 13 14 305 ovmpod ( 𝜑 → ( ⟨ 𝐸 , 𝐺 ⟩ ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟨ 𝐹 , 𝐻 ⟩ ) = ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ )
307 275 306 eqtrd ( 𝜑 → ( ⟨ 𝐸 , 𝐺 ⟩ ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) ⟨ 𝐹 , 𝐻 ⟩ ) = ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ )
308 307 eceq1d ( 𝜑 → [ ( ⟨ 𝐸 , 𝐺 ⟩ ( +g ‘ ( ( { ⟨ ( Base ‘ ndx ) , ( 𝐵 × 𝑆 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ ( 𝐵 × 𝑆 ) ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝑆 ) , 𝑏 ∈ ( 𝐵 × 𝑆 ) ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) ⟨ 𝐹 , 𝐻 ⟩ ) ] = [ ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ ] )
309 274 308 eqtrd ( 𝜑 → ( [ ⟨ 𝐸 , 𝐺 ⟩ ] [ ⟨ 𝐹 , 𝐻 ⟩ ] ) = [ ⟨ ( ( 𝐸 · 𝐻 ) + ( 𝐹 · 𝐺 ) ) , ( 𝐺 · 𝐻 ) ⟩ ] )