Step |
Hyp |
Ref |
Expression |
1 |
|
rlocbas.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rlocbas.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
rlocbas.2 |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
rlocbas.3 |
⊢ − = ( -g ‘ 𝑅 ) |
5 |
|
rlocbas.w |
⊢ 𝑊 = ( 𝐵 × 𝑆 ) |
6 |
|
rlocbas.l |
⊢ 𝐿 = ( 𝑅 RLocal 𝑆 ) |
7 |
|
rlocbas.4 |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
8 |
|
rlocbas.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
9 |
|
rlocbas.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑅 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑅 ) = ( ·𝑠 ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) |
17 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) |
18 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) |
19 |
|
eqid |
⊢ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) = ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) |
20 |
|
eqid |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } |
21 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) |
22 |
1 2 3 4 10 11 12 13 14 5 7 15 16 17 18 19 20 21 8 9
|
rlocval |
⊢ ( 𝜑 → ( 𝑅 RLocal 𝑆 ) = ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ∼ ) ) |
23 |
6 22
|
eqtrid |
⊢ ( 𝜑 → 𝐿 = ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ∼ ) ) |
24 |
|
eqidd |
⊢ ( 𝜑 → ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) ) |
25 |
|
eqid |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) |
26 |
25
|
imasvalstr |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) Struct 〈 1 , ; 1 2 〉 |
27 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
28 |
|
snsstp1 |
⊢ { 〈 ( Base ‘ ndx ) , 𝑊 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } |
29 |
|
ssun1 |
⊢ { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) |
30 |
|
ssun1 |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) |
31 |
29 30
|
sstri |
⊢ { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) |
32 |
28 31
|
sstri |
⊢ { 〈 ( Base ‘ ndx ) , 𝑊 〉 } ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) |
33 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
35 |
34 9
|
ssexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
36 |
34 35
|
xpexd |
⊢ ( 𝜑 → ( 𝐵 × 𝑆 ) ∈ V ) |
37 |
5 36
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
38 |
|
eqid |
⊢ ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) ) = ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) ) |
39 |
24 26 27 32 37 38
|
strfv3 |
⊢ ( 𝜑 → ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) ) = 𝑊 ) |
40 |
39
|
eqcomd |
⊢ ( 𝜑 → 𝑊 = ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) ) ) |
41 |
7
|
ovexi |
⊢ ∼ ∈ V |
42 |
41
|
a1i |
⊢ ( 𝜑 → ∼ ∈ V ) |
43 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∈ V |
44 |
|
tpex |
⊢ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ∈ V |
45 |
43 44
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∈ V |
46 |
|
tpex |
⊢ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ∈ V |
47 |
45 46
|
unex |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) ∈ V |
48 |
47
|
a1i |
⊢ ( 𝜑 → ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑅 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) ∈ V ) |
49 |
23 40 42 48
|
qusbas |
⊢ ( 𝜑 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐿 ) ) |