Metamath Proof Explorer


Theorem rlocbas

Description: The base set of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocbas.b 𝐵 = ( Base ‘ 𝑅 )
rlocbas.1 0 = ( 0g𝑅 )
rlocbas.2 · = ( .r𝑅 )
rlocbas.3 = ( -g𝑅 )
rlocbas.w 𝑊 = ( 𝐵 × 𝑆 )
rlocbas.l 𝐿 = ( 𝑅 RLocal 𝑆 )
rlocbas.4 = ( 𝑅 ~RL 𝑆 )
rlocbas.r ( 𝜑𝑅𝑉 )
rlocbas.s ( 𝜑𝑆𝐵 )
Assertion rlocbas ( 𝜑 → ( 𝑊 / ) = ( Base ‘ 𝐿 ) )

Proof

Step Hyp Ref Expression
1 rlocbas.b 𝐵 = ( Base ‘ 𝑅 )
2 rlocbas.1 0 = ( 0g𝑅 )
3 rlocbas.2 · = ( .r𝑅 )
4 rlocbas.3 = ( -g𝑅 )
5 rlocbas.w 𝑊 = ( 𝐵 × 𝑆 )
6 rlocbas.l 𝐿 = ( 𝑅 RLocal 𝑆 )
7 rlocbas.4 = ( 𝑅 ~RL 𝑆 )
8 rlocbas.r ( 𝜑𝑅𝑉 )
9 rlocbas.s ( 𝜑𝑆𝐵 )
10 eqid ( +g𝑅 ) = ( +g𝑅 )
11 eqid ( le ‘ 𝑅 ) = ( le ‘ 𝑅 )
12 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
13 eqid ( Base ‘ ( Scalar ‘ 𝑅 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) )
14 eqid ( ·𝑠𝑅 ) = ( ·𝑠𝑅 )
15 eqid ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑅 )
16 eqid ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 )
17 eqid ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
18 eqid ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
19 eqid ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) = ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ )
20 eqid { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) }
21 eqid ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
22 1 2 3 4 10 11 12 13 14 5 7 15 16 17 18 19 20 21 8 9 rlocval ( 𝜑 → ( 𝑅 RLocal 𝑆 ) = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ) )
23 6 22 eqtrid ( 𝜑𝐿 = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ) )
24 eqidd ( 𝜑 → ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) )
25 eqid ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
26 25 imasvalstr ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) Struct ⟨ 1 , 1 2 ⟩
27 baseid Base = Slot ( Base ‘ ndx )
28 snsstp1 { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ }
29 ssun1 { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } )
30 ssun1 ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
31 29 30 sstri { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
32 28 31 sstri { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } )
33 1 fvexi 𝐵 ∈ V
34 33 a1i ( 𝜑𝐵 ∈ V )
35 34 9 ssexd ( 𝜑𝑆 ∈ V )
36 34 35 xpexd ( 𝜑 → ( 𝐵 × 𝑆 ) ∈ V )
37 5 36 eqeltrid ( 𝜑𝑊 ∈ V )
38 eqid ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) = ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) )
39 24 26 27 32 37 38 strfv3 ( 𝜑 → ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) = 𝑊 )
40 39 eqcomd ( 𝜑𝑊 = ( Base ‘ ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ) )
41 7 ovexi ∈ V
42 41 a1i ( 𝜑 ∈ V )
43 tpex { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∈ V
44 tpex { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ∈ V
45 43 44 unex ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∈ V
46 tpex { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ∈ V
47 45 46 unex ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ∈ V
48 47 a1i ( 𝜑 → ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( +g𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑎𝑊 ↦ ⟨ ( 𝑘 ( ·𝑠𝑅 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑅 ) ×t ( ( TopSet ‘ 𝑅 ) ↾t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) ⟩ } ) ∈ V )
49 23 40 42 48 qusbas ( 𝜑 → ( 𝑊 / ) = ( Base ‘ 𝐿 ) )