Step |
Hyp |
Ref |
Expression |
1 |
|
rlocaddval.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rlocaddval.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
rlocaddval.3 |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
rlocaddval.4 |
⊢ 𝐿 = ( 𝑅 RLocal 𝑆 ) |
5 |
|
rlocaddval.5 |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
6 |
|
rlocaddval.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
rlocaddval.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( 𝐵 × 𝑆 ) = ( 𝐵 × 𝑆 ) |
11 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
12 |
11 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
13 |
12
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆 ⊆ 𝐵 ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
15 |
1 8 2 9 10 4 5 6 14
|
rlocbas |
⊢ ( 𝜑 → ( ( 𝐵 × 𝑆 ) / ∼ ) = ( Base ‘ 𝐿 ) ) |
16 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) ) |
17 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
21 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
22 |
1 8
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
24 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
25 |
11 24
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
26 |
25
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
27 |
7 26
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
28 |
23 27
|
opelxpd |
⊢ ( 𝜑 → 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ∈ ( 𝐵 × 𝑆 ) ) |
29 |
5
|
ovexi |
⊢ ∼ ∈ V |
30 |
29
|
ecelqsi |
⊢ ( 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ∈ ( 𝐵 × 𝑆 ) → [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
31 |
28 30
|
syl |
⊢ ( 𝜑 → [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
32 |
31 15
|
eleqtrd |
⊢ ( 𝜑 → [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ) |
33 |
15
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ↔ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ) |
34 |
33
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
35 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
36 |
35
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( +g ‘ 𝐿 ) 𝑥 ) = ( [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ) |
37 |
21
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑅 ∈ Ring ) |
38 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
39 |
38 13
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑆 ⊆ 𝐵 ) |
40 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ 𝑆 ) |
41 |
39 40
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ 𝐵 ) |
42 |
1 2 8 37 41
|
ringlzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 0g ‘ 𝑅 ) · 𝑏 ) = ( 0g ‘ 𝑅 ) ) |
43 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 ∈ 𝐵 ) |
44 |
1 2 24 37 43
|
ringridmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑎 · ( 1r ‘ 𝑅 ) ) = 𝑎 ) |
45 |
42 44
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( 0g ‘ 𝑅 ) · 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 · ( 1r ‘ 𝑅 ) ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) ) |
46 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
47 |
37
|
ringgrpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑅 ∈ Grp ) |
48 |
1 46 8 47 43
|
grplidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) = 𝑎 ) |
49 |
45 48
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( 0g ‘ 𝑅 ) · 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 · ( 1r ‘ 𝑅 ) ) ) = 𝑎 ) |
50 |
1 2 24 37 41
|
ringlidmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 1r ‘ 𝑅 ) · 𝑏 ) = 𝑏 ) |
51 |
49 50
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( ( ( 0g ‘ 𝑅 ) · 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 · ( 1r ‘ 𝑅 ) ) ) , ( ( 1r ‘ 𝑅 ) · 𝑏 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
52 |
51
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 ( ( ( 0g ‘ 𝑅 ) · 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 · ( 1r ‘ 𝑅 ) ) ) , ( ( 1r ‘ 𝑅 ) · 𝑏 ) 〉 ] ∼ = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
53 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑅 ∈ CRing ) |
54 |
23
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
55 |
38 26
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
56 |
1 2 46 4 5 53 38 54 43 55 40 20
|
rlocaddval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 ( ( ( 0g ‘ 𝑅 ) · 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 · ( 1r ‘ 𝑅 ) ) ) , ( ( 1r ‘ 𝑅 ) · 𝑏 ) 〉 ] ∼ ) |
57 |
52 56 35
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = 𝑥 ) |
58 |
36 57
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( +g ‘ 𝐿 ) 𝑥 ) = 𝑥 ) |
59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
60 |
59
|
elrlocbasi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
61 |
58 60
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( +g ‘ 𝐿 ) 𝑥 ) = 𝑥 ) |
62 |
34 61
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → ( [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( +g ‘ 𝐿 ) 𝑥 ) = 𝑥 ) |
63 |
1 2 3 4 5 53 38 43 54 40 55 20
|
rlocaddval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = [ 〈 ( ( 𝑎 · ( 1r ‘ 𝑅 ) ) + ( ( 0g ‘ 𝑅 ) · 𝑏 ) ) , ( 𝑏 · ( 1r ‘ 𝑅 ) ) 〉 ] ∼ ) |
64 |
35
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( +g ‘ 𝐿 ) [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) ) |
65 |
44 42
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 𝑎 · ( 1r ‘ 𝑅 ) ) + ( ( 0g ‘ 𝑅 ) · 𝑏 ) ) = ( 𝑎 + ( 0g ‘ 𝑅 ) ) ) |
66 |
1 3 8 47 43
|
grpridd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑎 + ( 0g ‘ 𝑅 ) ) = 𝑎 ) |
67 |
65 66
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 = ( ( 𝑎 · ( 1r ‘ 𝑅 ) ) + ( ( 0g ‘ 𝑅 ) · 𝑏 ) ) ) |
68 |
1 2 24 37 41
|
ringridmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑏 · ( 1r ‘ 𝑅 ) ) = 𝑏 ) |
69 |
68
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 = ( 𝑏 · ( 1r ‘ 𝑅 ) ) ) |
70 |
67 69
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 𝑎 , 𝑏 〉 = 〈 ( ( 𝑎 · ( 1r ‘ 𝑅 ) ) + ( ( 0g ‘ 𝑅 ) · 𝑏 ) ) , ( 𝑏 · ( 1r ‘ 𝑅 ) ) 〉 ) |
71 |
70
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 𝑎 , 𝑏 〉 ] ∼ = [ 〈 ( ( 𝑎 · ( 1r ‘ 𝑅 ) ) + ( ( 0g ‘ 𝑅 ) · 𝑏 ) ) , ( 𝑏 · ( 1r ‘ 𝑅 ) ) 〉 ] ∼ ) |
72 |
35 71
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑥 = [ 〈 ( ( 𝑎 · ( 1r ‘ 𝑅 ) ) + ( ( 0g ‘ 𝑅 ) · 𝑏 ) ) , ( 𝑏 · ( 1r ‘ 𝑅 ) ) 〉 ] ∼ ) |
73 |
63 64 72
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( +g ‘ 𝐿 ) [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = 𝑥 ) |
74 |
73 60
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( +g ‘ 𝐿 ) [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = 𝑥 ) |
75 |
34 74
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → ( 𝑥 ( +g ‘ 𝐿 ) [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = 𝑥 ) |
76 |
18 19 20 32 62 75
|
ismgmid2 |
⊢ ( 𝜑 → [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ = ( 0g ‘ 𝐿 ) ) |
77 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
78 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) |
79 |
77 78
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ) |
80 |
6
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑅 ∈ CRing ) |
81 |
7
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
82 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑎 ∈ 𝐵 ) |
83 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑐 ∈ 𝐵 ) |
84 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑏 ∈ 𝑆 ) |
85 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑑 ∈ 𝑆 ) |
86 |
1 2 3 4 5 80 81 82 83 84 85 20
|
rlocaddval |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) = [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ) |
87 |
80
|
crnggrpd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑅 ∈ Grp ) |
88 |
21
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑅 ∈ Ring ) |
89 |
81 13
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑆 ⊆ 𝐵 ) |
90 |
89 85
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑑 ∈ 𝐵 ) |
91 |
1 2 88 82 90
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑎 · 𝑑 ) ∈ 𝐵 ) |
92 |
89 84
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑏 ∈ 𝐵 ) |
93 |
1 2 88 83 92
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑐 · 𝑏 ) ∈ 𝐵 ) |
94 |
1 3 87 91 93
|
grpcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) ∈ 𝐵 ) |
95 |
11 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
96 |
95 81 84 85
|
submcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑏 · 𝑑 ) ∈ 𝑆 ) |
97 |
94 96
|
opelxpd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ∈ ( 𝐵 × 𝑆 ) ) |
98 |
29
|
ecelqsi |
⊢ ( 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ∈ ( 𝐵 × 𝑆 ) → [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
99 |
97 98
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
100 |
86 99
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
101 |
79 100
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
102 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
103 |
102
|
elrlocbasi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∃ 𝑐 ∈ 𝐵 ∃ 𝑑 ∈ 𝑆 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) |
104 |
101 103
|
r19.29vva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
105 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
106 |
105
|
elrlocbasi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
107 |
104 106
|
r19.29vva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
108 |
107
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
109 |
6
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑅 ∈ CRing ) |
110 |
109
|
crnggrpd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑅 ∈ Grp ) |
111 |
21
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑅 ∈ Ring ) |
112 |
|
simp-9r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑎 ∈ 𝐵 ) |
113 |
7
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
114 |
113 13
|
syl |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑆 ⊆ 𝐵 ) |
115 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑑 ∈ 𝑆 ) |
116 |
114 115
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑑 ∈ 𝐵 ) |
117 |
1 2 111 112 116
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑎 · 𝑑 ) ∈ 𝐵 ) |
118 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑓 ∈ 𝑆 ) |
119 |
114 118
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑓 ∈ 𝐵 ) |
120 |
1 2 111 117 119
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑑 ) · 𝑓 ) ∈ 𝐵 ) |
121 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑐 ∈ 𝐵 ) |
122 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑏 ∈ 𝑆 ) |
123 |
114 122
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑏 ∈ 𝐵 ) |
124 |
1 2 111 121 123
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑐 · 𝑏 ) ∈ 𝐵 ) |
125 |
1 2 111 124 119
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑐 · 𝑏 ) · 𝑓 ) ∈ 𝐵 ) |
126 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑒 ∈ 𝐵 ) |
127 |
1 2 111 123 116
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · 𝑑 ) ∈ 𝐵 ) |
128 |
1 2 111 126 127
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑒 · ( 𝑏 · 𝑑 ) ) ∈ 𝐵 ) |
129 |
1 3 110 120 125 128
|
grpassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( ( 𝑎 · 𝑑 ) · 𝑓 ) + ( ( 𝑐 · 𝑏 ) · 𝑓 ) ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) = ( ( ( 𝑎 · 𝑑 ) · 𝑓 ) + ( ( ( 𝑐 · 𝑏 ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) ) ) |
130 |
1 2 111 112 116 119
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑑 ) · 𝑓 ) = ( 𝑎 · ( 𝑑 · 𝑓 ) ) ) |
131 |
1 2 109 121 123 119
|
cringmul32d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑐 · 𝑏 ) · 𝑓 ) = ( ( 𝑐 · 𝑓 ) · 𝑏 ) ) |
132 |
1 2 109 126 123 116
|
crng12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑒 · ( 𝑏 · 𝑑 ) ) = ( 𝑏 · ( 𝑒 · 𝑑 ) ) ) |
133 |
1 2 111 126 116
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑒 · 𝑑 ) ∈ 𝐵 ) |
134 |
1 2 109 123 133
|
crngcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( 𝑒 · 𝑑 ) ) = ( ( 𝑒 · 𝑑 ) · 𝑏 ) ) |
135 |
132 134
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑒 · ( 𝑏 · 𝑑 ) ) = ( ( 𝑒 · 𝑑 ) · 𝑏 ) ) |
136 |
131 135
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑐 · 𝑏 ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) = ( ( ( 𝑐 · 𝑓 ) · 𝑏 ) + ( ( 𝑒 · 𝑑 ) · 𝑏 ) ) ) |
137 |
130 136
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑑 ) · 𝑓 ) + ( ( ( 𝑐 · 𝑏 ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) ) = ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) · 𝑏 ) + ( ( 𝑒 · 𝑑 ) · 𝑏 ) ) ) ) |
138 |
129 137
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( ( 𝑎 · 𝑑 ) · 𝑓 ) + ( ( 𝑐 · 𝑏 ) · 𝑓 ) ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) = ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) · 𝑏 ) + ( ( 𝑒 · 𝑑 ) · 𝑏 ) ) ) ) |
139 |
1 3 2 111 117 124 119
|
ringdird |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑓 ) = ( ( ( 𝑎 · 𝑑 ) · 𝑓 ) + ( ( 𝑐 · 𝑏 ) · 𝑓 ) ) ) |
140 |
139
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) = ( ( ( ( 𝑎 · 𝑑 ) · 𝑓 ) + ( ( 𝑐 · 𝑏 ) · 𝑓 ) ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) ) |
141 |
1 2 111 121 119
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑐 · 𝑓 ) ∈ 𝐵 ) |
142 |
1 3 2 111 141 133 123
|
ringdird |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) · 𝑏 ) = ( ( ( 𝑐 · 𝑓 ) · 𝑏 ) + ( ( 𝑒 · 𝑑 ) · 𝑏 ) ) ) |
143 |
142
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) · 𝑏 ) ) = ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) · 𝑏 ) + ( ( 𝑒 · 𝑑 ) · 𝑏 ) ) ) ) |
144 |
138 140 143
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) = ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) · 𝑏 ) ) ) |
145 |
1 2 111 123 116 119
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑑 ) · 𝑓 ) = ( 𝑏 · ( 𝑑 · 𝑓 ) ) ) |
146 |
144 145
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 = 〈 ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) · 𝑏 ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ) |
147 |
146
|
eceq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → [ 〈 ( ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ] ∼ = [ 〈 ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) · 𝑏 ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ ) |
148 |
1 3 110 117 124
|
grpcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) ∈ 𝐵 ) |
149 |
95 113 122 115
|
submcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · 𝑑 ) ∈ 𝑆 ) |
150 |
1 2 3 4 5 109 113 148 126 149 118 20
|
rlocaddval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = [ 〈 ( ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑓 ) + ( 𝑒 · ( 𝑏 · 𝑑 ) ) ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ] ∼ ) |
151 |
1 3 110 141 133
|
grpcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ∈ 𝐵 ) |
152 |
95 113 115 118
|
submcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑑 · 𝑓 ) ∈ 𝑆 ) |
153 |
1 2 3 4 5 109 113 112 151 122 152 20
|
rlocaddval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) = [ 〈 ( ( 𝑎 · ( 𝑑 · 𝑓 ) ) + ( ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) · 𝑏 ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ ) |
154 |
147 150 153
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) ) |
155 |
1 2 3 4 5 109 113 112 121 122 115 20
|
rlocaddval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) = [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ) |
156 |
155
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
157 |
1 2 3 4 5 109 113 121 126 115 118 20
|
rlocaddval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = [ 〈 ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) |
158 |
157
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) ) |
159 |
154 156 158
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
160 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
161 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) |
162 |
160 161
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ) |
163 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) |
164 |
162 163
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) 𝑧 ) = ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
165 |
161 163
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) = ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
166 |
160 165
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑥 ( +g ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
167 |
159 164 166
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) ) |
168 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
169 |
168
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
170 |
169
|
elrlocbasi |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝑆 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) |
171 |
167 170
|
r19.29vva |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) ) |
172 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
173 |
172
|
ad5ant12 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
174 |
173
|
elrlocbasi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∃ 𝑐 ∈ 𝐵 ∃ 𝑑 ∈ 𝑆 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) |
175 |
171 174
|
r19.29vva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) ) |
176 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
177 |
176
|
elrlocbasi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
178 |
175 177
|
r19.29vva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) ) |
179 |
15 16 108 178 31 61 74
|
ismndd |
⊢ ( 𝜑 → 𝐿 ∈ Mnd ) |
180 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
181 |
1 180 47 43
|
grpinvcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) ∈ 𝐵 ) |
182 |
181 40
|
opelxpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ∈ ( 𝐵 × 𝑆 ) ) |
183 |
29
|
ecelqsi |
⊢ ( 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ∈ ( 𝐵 × 𝑆 ) → [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
184 |
182 183
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
185 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑢 = [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ) → 𝑢 = [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ) |
186 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑢 = [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ) → 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
187 |
185 186
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑢 = [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ) → ( 𝑢 ( +g ‘ 𝐿 ) 𝑥 ) = ( [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ) |
188 |
187
|
eqeq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑢 = [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ) → ( ( 𝑢 ( +g ‘ 𝐿 ) 𝑥 ) = [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ↔ ( [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) ) |
189 |
1 2 3 4 5 53 38 181 43 40 40 20
|
rlocaddval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) · 𝑏 ) + ( 𝑎 · 𝑏 ) ) , ( 𝑏 · 𝑏 ) 〉 ] ∼ ) |
190 |
1 3 8 180 47 43
|
grplinvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) + 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
191 |
190
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) + 𝑎 ) · 𝑏 ) = ( ( 0g ‘ 𝑅 ) · 𝑏 ) ) |
192 |
1 3 2 37 181 43 41
|
ringdird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) + 𝑎 ) · 𝑏 ) = ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) · 𝑏 ) + ( 𝑎 · 𝑏 ) ) ) |
193 |
191 192 42
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) · 𝑏 ) + ( 𝑎 · 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
194 |
193
|
opeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) · 𝑏 ) + ( 𝑎 · 𝑏 ) ) , ( 𝑏 · 𝑏 ) 〉 = 〈 ( 0g ‘ 𝑅 ) , ( 𝑏 · 𝑏 ) 〉 ) |
195 |
194
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) · 𝑏 ) + ( 𝑎 · 𝑏 ) ) , ( 𝑏 · 𝑏 ) 〉 ] ∼ = [ 〈 ( 0g ‘ 𝑅 ) , ( 𝑏 · 𝑏 ) 〉 ] ∼ ) |
196 |
1 8 24 2 9 10 5 6 7
|
erler |
⊢ ( 𝜑 → ∼ Er ( 𝐵 × 𝑆 ) ) |
197 |
196
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∼ Er ( 𝐵 × 𝑆 ) ) |
198 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( 0g ‘ 𝑅 ) , ( 𝑏 · 𝑏 ) 〉 = 〈 ( 0g ‘ 𝑅 ) , ( 𝑏 · 𝑏 ) 〉 ) |
199 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 = 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ) |
200 |
95 38 40 40
|
submcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑏 · 𝑏 ) ∈ 𝑆 ) |
201 |
1 2 24 37 54
|
ringridmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 0g ‘ 𝑅 ) · ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
202 |
39 200
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑏 · 𝑏 ) ∈ 𝐵 ) |
203 |
1 2 8 37 202
|
ringlzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 0g ‘ 𝑅 ) · ( 𝑏 · 𝑏 ) ) = ( 0g ‘ 𝑅 ) ) |
204 |
201 203
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( 0g ‘ 𝑅 ) · ( 1r ‘ 𝑅 ) ) ( -g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) · ( 𝑏 · 𝑏 ) ) ) = ( ( 0g ‘ 𝑅 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
205 |
1 8 9
|
grpsubid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
206 |
47 54 205
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 0g ‘ 𝑅 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
207 |
204 206
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( ( 0g ‘ 𝑅 ) · ( 1r ‘ 𝑅 ) ) ( -g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) · ( 𝑏 · 𝑏 ) ) ) = ( 0g ‘ 𝑅 ) ) |
208 |
207
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 𝑏 · 𝑏 ) · ( ( ( 0g ‘ 𝑅 ) · ( 1r ‘ 𝑅 ) ) ( -g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) · ( 𝑏 · 𝑏 ) ) ) ) = ( ( 𝑏 · 𝑏 ) · ( 0g ‘ 𝑅 ) ) ) |
209 |
1 2 8 37 202
|
ringrzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 𝑏 · 𝑏 ) · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
210 |
208 209
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 𝑏 · 𝑏 ) · ( ( ( 0g ‘ 𝑅 ) · ( 1r ‘ 𝑅 ) ) ( -g ‘ 𝑅 ) ( ( 0g ‘ 𝑅 ) · ( 𝑏 · 𝑏 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
211 |
1 5 39 8 2 9 198 199 54 54 200 55 200 210
|
erlbrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( 0g ‘ 𝑅 ) , ( 𝑏 · 𝑏 ) 〉 ∼ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ) |
212 |
197 211
|
erthi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 ( 0g ‘ 𝑅 ) , ( 𝑏 · 𝑏 ) 〉 ] ∼ = [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) |
213 |
189 195 212
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( ( invg ‘ 𝑅 ) ‘ 𝑎 ) , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) |
214 |
184 188 213
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∃ 𝑢 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ( 𝑢 ( +g ‘ 𝐿 ) 𝑥 ) = [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) |
215 |
214 60
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ∃ 𝑢 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ( 𝑢 ( +g ‘ 𝐿 ) 𝑥 ) = [ 〈 ( 0g ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) |
216 |
15 16 76 179 215
|
isgrpd2e |
⊢ ( 𝜑 → 𝐿 ∈ Grp ) |
217 |
77 78
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ) |
218 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
219 |
1 2 3 4 5 80 81 82 83 84 85 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) = [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ) |
220 |
1 2 88 82 83
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
221 |
220 96
|
opelxpd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ∈ ( 𝐵 × 𝑆 ) ) |
222 |
29
|
ecelqsi |
⊢ ( 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ∈ ( 𝐵 × 𝑆 ) → [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
223 |
221 222
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
224 |
219 223
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
225 |
217 224
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
226 |
225 103
|
r19.29vva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
227 |
226 106
|
r19.29vva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
228 |
227
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
229 |
1 2 111 112 121 126
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑐 ) · 𝑒 ) = ( 𝑎 · ( 𝑐 · 𝑒 ) ) ) |
230 |
229 145
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( ( 𝑎 · 𝑐 ) · 𝑒 ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 = 〈 ( 𝑎 · ( 𝑐 · 𝑒 ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ) |
231 |
230
|
eceq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → [ 〈 ( ( 𝑎 · 𝑐 ) · 𝑒 ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ] ∼ = [ 〈 ( 𝑎 · ( 𝑐 · 𝑒 ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ ) |
232 |
1 2 111 112 121
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
233 |
1 2 3 4 5 109 113 232 126 149 118 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = [ 〈 ( ( 𝑎 · 𝑐 ) · 𝑒 ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ] ∼ ) |
234 |
1 2 111 121 126
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑐 · 𝑒 ) ∈ 𝐵 ) |
235 |
1 2 3 4 5 109 113 112 234 122 152 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( 𝑐 · 𝑒 ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) = [ 〈 ( 𝑎 · ( 𝑐 · 𝑒 ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ ) |
236 |
231 233 235
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( 𝑐 · 𝑒 ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) ) |
237 |
1 2 3 4 5 109 113 112 121 122 115 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) = [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ) |
238 |
237
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
239 |
1 2 3 4 5 109 113 121 126 115 118 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = [ 〈 ( 𝑐 · 𝑒 ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) |
240 |
239
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( 𝑐 · 𝑒 ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) ) |
241 |
236 238 240
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
242 |
160 161
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ) |
243 |
242 163
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
244 |
161 163
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) = ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
245 |
160 244
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
246 |
241 243 245
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
247 |
246 170
|
r19.29vva |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
248 |
247 174
|
r19.29vva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
249 |
248 177
|
r19.29vva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
250 |
196
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ∼ Er ( 𝐵 × 𝑆 ) ) |
251 |
|
eqidd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 = 〈 ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ) |
252 |
1 2 111 112 123
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
253 |
1 3 2 111 252 141 133
|
ringdid |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑏 ) · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) = ( ( ( 𝑎 · 𝑏 ) · ( 𝑐 · 𝑓 ) ) + ( ( 𝑎 · 𝑏 ) · ( 𝑒 · 𝑑 ) ) ) ) |
254 |
1 2 111 112 123 151
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑏 ) · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) = ( 𝑎 · ( 𝑏 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) ) |
255 |
253 254
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑏 ) · ( 𝑐 · 𝑓 ) ) + ( ( 𝑎 · 𝑏 ) · ( 𝑒 · 𝑑 ) ) ) = ( 𝑎 · ( 𝑏 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) ) |
256 |
11
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
257 |
6 256
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
258 |
257
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
259 |
12 95 258 112 121 123 119
|
cmn4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑐 ) · ( 𝑏 · 𝑓 ) ) = ( ( 𝑎 · 𝑏 ) · ( 𝑐 · 𝑓 ) ) ) |
260 |
12 95 258 112 126 123 116
|
cmn4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑒 ) · ( 𝑏 · 𝑑 ) ) = ( ( 𝑎 · 𝑏 ) · ( 𝑒 · 𝑑 ) ) ) |
261 |
259 260
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑐 ) · ( 𝑏 · 𝑓 ) ) + ( ( 𝑎 · 𝑒 ) · ( 𝑏 · 𝑑 ) ) ) = ( ( ( 𝑎 · 𝑏 ) · ( 𝑐 · 𝑓 ) ) + ( ( 𝑎 · 𝑏 ) · ( 𝑒 · 𝑑 ) ) ) ) |
262 |
1 2 109 123 112 151
|
crng12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) = ( 𝑎 · ( 𝑏 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) ) |
263 |
255 261 262
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑐 ) · ( 𝑏 · 𝑓 ) ) + ( ( 𝑎 · 𝑒 ) · ( 𝑏 · 𝑑 ) ) ) = ( 𝑏 · ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) ) |
264 |
1 2 109 127 123 119
|
crng12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑑 ) · ( 𝑏 · 𝑓 ) ) = ( 𝑏 · ( ( 𝑏 · 𝑑 ) · 𝑓 ) ) ) |
265 |
145
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( ( 𝑏 · 𝑑 ) · 𝑓 ) ) = ( 𝑏 · ( 𝑏 · ( 𝑑 · 𝑓 ) ) ) ) |
266 |
264 265
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑑 ) · ( 𝑏 · 𝑓 ) ) = ( 𝑏 · ( 𝑏 · ( 𝑑 · 𝑓 ) ) ) ) |
267 |
263 266
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( ( ( 𝑎 · 𝑐 ) · ( 𝑏 · 𝑓 ) ) + ( ( 𝑎 · 𝑒 ) · ( 𝑏 · 𝑑 ) ) ) , ( ( 𝑏 · 𝑑 ) · ( 𝑏 · 𝑓 ) ) 〉 = 〈 ( 𝑏 · ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) , ( 𝑏 · ( 𝑏 · ( 𝑑 · 𝑓 ) ) ) 〉 ) |
268 |
1 2 111 112 151
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ∈ 𝐵 ) |
269 |
1 2 111 123 268
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) ∈ 𝐵 ) |
270 |
95 113 122 152
|
submcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( 𝑑 · 𝑓 ) ) ∈ 𝑆 ) |
271 |
95 113 122 270
|
submcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( 𝑏 · ( 𝑑 · 𝑓 ) ) ) ∈ 𝑆 ) |
272 |
|
eqidd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) = ( 𝑏 · ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) ) ) |
273 |
|
eqidd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · ( 𝑏 · ( 𝑑 · 𝑓 ) ) ) = ( 𝑏 · ( 𝑏 · ( 𝑑 · 𝑓 ) ) ) ) |
274 |
1 5 109 113 2 251 267 268 269 270 271 122 272 273
|
erlbr2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ∼ 〈 ( ( ( 𝑎 · 𝑐 ) · ( 𝑏 · 𝑓 ) ) + ( ( 𝑎 · 𝑒 ) · ( 𝑏 · 𝑑 ) ) ) , ( ( 𝑏 · 𝑑 ) · ( 𝑏 · 𝑓 ) ) 〉 ) |
275 |
250 274
|
erthi |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → [ 〈 ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ = [ 〈 ( ( ( 𝑎 · 𝑐 ) · ( 𝑏 · 𝑓 ) ) + ( ( 𝑎 · 𝑒 ) · ( 𝑏 · 𝑑 ) ) ) , ( ( 𝑏 · 𝑑 ) · ( 𝑏 · 𝑓 ) ) 〉 ] ∼ ) |
276 |
1 2 3 4 5 109 113 112 151 122 152 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) = [ 〈 ( 𝑎 · ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) ) , ( 𝑏 · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ ) |
277 |
1 2 111 112 126
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑎 · 𝑒 ) ∈ 𝐵 ) |
278 |
95 113 122 118
|
submcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · 𝑓 ) ∈ 𝑆 ) |
279 |
1 2 3 4 5 109 113 232 277 149 278 20
|
rlocaddval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 𝑎 · 𝑒 ) , ( 𝑏 · 𝑓 ) 〉 ] ∼ ) = [ 〈 ( ( ( 𝑎 · 𝑐 ) · ( 𝑏 · 𝑓 ) ) + ( ( 𝑎 · 𝑒 ) · ( 𝑏 · 𝑑 ) ) ) , ( ( 𝑏 · 𝑑 ) · ( 𝑏 · 𝑓 ) ) 〉 ] ∼ ) |
280 |
275 276 279
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) = ( [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 𝑎 · 𝑒 ) , ( 𝑏 · 𝑓 ) 〉 ] ∼ ) ) |
281 |
157
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( ( 𝑐 · 𝑓 ) + ( 𝑒 · 𝑑 ) ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) ) |
282 |
1 2 3 4 5 109 113 112 126 122 118 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = [ 〈 ( 𝑎 · 𝑒 ) , ( 𝑏 · 𝑓 ) 〉 ] ∼ ) |
283 |
237 282
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( +g ‘ 𝐿 ) ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) = ( [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 𝑎 · 𝑒 ) , ( 𝑏 · 𝑓 ) 〉 ] ∼ ) ) |
284 |
280 281 283
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) = ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( +g ‘ 𝐿 ) ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
285 |
160 165
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
286 |
160 163
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
287 |
242 286
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ) = ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( +g ‘ 𝐿 ) ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
288 |
284 285 287
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
289 |
288 170
|
r19.29vva |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
290 |
289 174
|
r19.29vva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
291 |
290 177
|
r19.29vva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → ( 𝑥 ( .r ‘ 𝐿 ) ( 𝑦 ( +g ‘ 𝐿 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ( +g ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
292 |
1 3 2 111 117 124 126
|
ringdird |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑒 ) = ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) |
293 |
292
|
opeq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑒 ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 = 〈 ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ) |
294 |
1 2 111 117 126 119
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) · 𝑓 ) = ( ( 𝑎 · 𝑑 ) · ( 𝑒 · 𝑓 ) ) ) |
295 |
1 2 111 117 126
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑑 ) · 𝑒 ) ∈ 𝐵 ) |
296 |
1 2 109 119 295
|
crngcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑓 · ( ( 𝑎 · 𝑑 ) · 𝑒 ) ) = ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) · 𝑓 ) ) |
297 |
12 95 258 112 126 116 119
|
cmn4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) = ( ( 𝑎 · 𝑑 ) · ( 𝑒 · 𝑓 ) ) ) |
298 |
294 296 297
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) = ( 𝑓 · ( ( 𝑎 · 𝑑 ) · 𝑒 ) ) ) |
299 |
1 2 111 124 126 119
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑐 · 𝑏 ) · 𝑒 ) · 𝑓 ) = ( ( 𝑐 · 𝑏 ) · ( 𝑒 · 𝑓 ) ) ) |
300 |
1 2 111 124 126
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑐 · 𝑏 ) · 𝑒 ) ∈ 𝐵 ) |
301 |
1 2 109 119 300
|
crngcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑓 · ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) = ( ( ( 𝑐 · 𝑏 ) · 𝑒 ) · 𝑓 ) ) |
302 |
12 95 258 121 126 123 119
|
cmn4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) = ( ( 𝑐 · 𝑏 ) · ( 𝑒 · 𝑓 ) ) ) |
303 |
299 301 302
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) = ( 𝑓 · ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) |
304 |
298 303
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) + ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) ) = ( ( 𝑓 · ( ( 𝑎 · 𝑑 ) · 𝑒 ) ) + ( 𝑓 · ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) ) |
305 |
1 3 2 111 119 295 300
|
ringdid |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑓 · ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) = ( ( 𝑓 · ( ( 𝑎 · 𝑑 ) · 𝑒 ) ) + ( 𝑓 · ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) ) |
306 |
304 305
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) + ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) ) = ( 𝑓 · ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) ) |
307 |
114 278
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · 𝑓 ) ∈ 𝐵 ) |
308 |
1 2 111 116 307 119
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑑 · ( 𝑏 · 𝑓 ) ) · 𝑓 ) = ( 𝑑 · ( ( 𝑏 · 𝑓 ) · 𝑓 ) ) ) |
309 |
1 2 109 123 116
|
crngcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑏 · 𝑑 ) = ( 𝑑 · 𝑏 ) ) |
310 |
309
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑑 ) · 𝑓 ) = ( ( 𝑑 · 𝑏 ) · 𝑓 ) ) |
311 |
1 2 111 116 123 119
|
ringassd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑑 · 𝑏 ) · 𝑓 ) = ( 𝑑 · ( 𝑏 · 𝑓 ) ) ) |
312 |
310 311
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑑 ) · 𝑓 ) = ( 𝑑 · ( 𝑏 · 𝑓 ) ) ) |
313 |
312
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑏 · 𝑑 ) · 𝑓 ) · 𝑓 ) = ( ( 𝑑 · ( 𝑏 · 𝑓 ) ) · 𝑓 ) ) |
314 |
1 2 109 307 116 119
|
crng12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑓 ) · ( 𝑑 · 𝑓 ) ) = ( 𝑑 · ( ( 𝑏 · 𝑓 ) · 𝑓 ) ) ) |
315 |
308 313 314
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑓 ) · ( 𝑑 · 𝑓 ) ) = ( ( ( 𝑏 · 𝑑 ) · 𝑓 ) · 𝑓 ) ) |
316 |
306 315
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) + ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) ) , ( ( 𝑏 · 𝑓 ) · ( 𝑑 · 𝑓 ) ) 〉 = 〈 ( 𝑓 · ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) , ( ( ( 𝑏 · 𝑑 ) · 𝑓 ) · 𝑓 ) 〉 ) |
317 |
1 3 110 295 300
|
grpcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ∈ 𝐵 ) |
318 |
1 2 111 119 317
|
ringcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑓 · ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) ∈ 𝐵 ) |
319 |
145 270
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑑 ) · 𝑓 ) ∈ 𝑆 ) |
320 |
95 113 319 118
|
submcld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑏 · 𝑑 ) · 𝑓 ) · 𝑓 ) ∈ 𝑆 ) |
321 |
|
eqidd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( 𝑓 · ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) = ( 𝑓 · ( ( ( 𝑎 · 𝑑 ) · 𝑒 ) + ( ( 𝑐 · 𝑏 ) · 𝑒 ) ) ) ) |
322 |
114 319
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑏 · 𝑑 ) · 𝑓 ) ∈ 𝐵 ) |
323 |
1 2 109 322 119
|
crngcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( ( 𝑏 · 𝑑 ) · 𝑓 ) · 𝑓 ) = ( 𝑓 · ( ( 𝑏 · 𝑑 ) · 𝑓 ) ) ) |
324 |
1 5 109 113 2 293 316 317 318 319 320 118 321 323
|
erlbr2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → 〈 ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑒 ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ∼ 〈 ( ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) + ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) ) , ( ( 𝑏 · 𝑓 ) · ( 𝑑 · 𝑓 ) ) 〉 ) |
325 |
250 324
|
erthi |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → [ 〈 ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑒 ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ] ∼ = [ 〈 ( ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) + ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) ) , ( ( 𝑏 · 𝑓 ) · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ ) |
326 |
1 2 3 4 5 109 113 148 126 149 118 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = [ 〈 ( ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) · 𝑒 ) , ( ( 𝑏 · 𝑑 ) · 𝑓 ) 〉 ] ∼ ) |
327 |
1 2 3 4 5 109 113 277 234 278 152 20
|
rlocaddval |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( 𝑎 · 𝑒 ) , ( 𝑏 · 𝑓 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 𝑐 · 𝑒 ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) = [ 〈 ( ( ( 𝑎 · 𝑒 ) · ( 𝑑 · 𝑓 ) ) + ( ( 𝑐 · 𝑒 ) · ( 𝑏 · 𝑓 ) ) ) , ( ( 𝑏 · 𝑓 ) · ( 𝑑 · 𝑓 ) ) 〉 ] ∼ ) |
328 |
325 326 327
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 ( 𝑎 · 𝑒 ) , ( 𝑏 · 𝑓 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 𝑐 · 𝑒 ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) ) |
329 |
155
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( [ 〈 ( ( 𝑎 · 𝑑 ) + ( 𝑐 · 𝑏 ) ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
330 |
282 239
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ( +g ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) = ( [ 〈 ( 𝑎 · 𝑒 ) , ( 𝑏 · 𝑓 ) 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 ( 𝑐 · 𝑒 ) , ( 𝑑 · 𝑓 ) 〉 ] ∼ ) ) |
331 |
328 329 330
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) = ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ( +g ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
332 |
162 163
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) |
333 |
286 244
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ( +g ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) = ( ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ( +g ‘ 𝐿 ) ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑒 , 𝑓 〉 ] ∼ ) ) ) |
334 |
331 332 333
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑓 ∈ 𝑆 ) ∧ 𝑧 = [ 〈 𝑒 , 𝑓 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ( +g ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
335 |
334 170
|
r19.29vva |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ( +g ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
336 |
335 174
|
r19.29vva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ( +g ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
337 |
336 177
|
r19.29vva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑧 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ) → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ( .r ‘ 𝐿 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑧 ) ( +g ‘ 𝐿 ) ( 𝑦 ( .r ‘ 𝐿 ) 𝑧 ) ) ) |
338 |
14 27
|
sseldd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
339 |
338 27
|
opelxpd |
⊢ ( 𝜑 → 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ∈ ( 𝐵 × 𝑆 ) ) |
340 |
29
|
ecelqsi |
⊢ ( 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ∈ ( 𝐵 × 𝑆 ) → [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
341 |
339 340
|
syl |
⊢ ( 𝜑 → [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
342 |
35
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = ( [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ) |
343 |
1 2 24 37 43
|
ringlidmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ( 1r ‘ 𝑅 ) · 𝑎 ) = 𝑎 ) |
344 |
343 50
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( ( 1r ‘ 𝑅 ) · 𝑎 ) , ( ( 1r ‘ 𝑅 ) · 𝑏 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
345 |
344
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 ( ( 1r ‘ 𝑅 ) · 𝑎 ) , ( ( 1r ‘ 𝑅 ) · 𝑏 ) 〉 ] ∼ = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
346 |
39 55
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
347 |
1 2 3 4 5 53 38 346 43 55 40 218
|
rlocmulval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 ( ( 1r ‘ 𝑅 ) · 𝑎 ) , ( ( 1r ‘ 𝑅 ) · 𝑏 ) 〉 ] ∼ ) |
348 |
345 347 35
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = 𝑥 ) |
349 |
342 348
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ) |
350 |
349 60
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ) |
351 |
1 2 3 4 5 53 38 43 346 40 55 218
|
rlocmulval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = [ 〈 ( 𝑎 · ( 1r ‘ 𝑅 ) ) , ( 𝑏 · ( 1r ‘ 𝑅 ) ) 〉 ] ∼ ) |
352 |
35
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) ) |
353 |
44
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 = ( 𝑎 · ( 1r ‘ 𝑅 ) ) ) |
354 |
353 69
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 𝑎 , 𝑏 〉 = 〈 ( 𝑎 · ( 1r ‘ 𝑅 ) ) , ( 𝑏 · ( 1r ‘ 𝑅 ) ) 〉 ) |
355 |
354
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 𝑎 , 𝑏 〉 ] ∼ = [ 〈 ( 𝑎 · ( 1r ‘ 𝑅 ) ) , ( 𝑏 · ( 1r ‘ 𝑅 ) ) 〉 ] ∼ ) |
356 |
351 352 355
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
357 |
356 35
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = 𝑥 ) |
358 |
357 60
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 ( 1r ‘ 𝑅 ) , ( 1r ‘ 𝑅 ) 〉 ] ∼ ) = 𝑥 ) |
359 |
1 2 80 82 83
|
crngcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑎 · 𝑐 ) = ( 𝑐 · 𝑎 ) ) |
360 |
1 2 80 92 90
|
crngcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑏 · 𝑑 ) = ( 𝑑 · 𝑏 ) ) |
361 |
359 360
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 = 〈 ( 𝑐 · 𝑎 ) , ( 𝑑 · 𝑏 ) 〉 ) |
362 |
361
|
eceq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → [ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 𝑑 ) 〉 ] ∼ = [ 〈 ( 𝑐 · 𝑎 ) , ( 𝑑 · 𝑏 ) 〉 ] ∼ ) |
363 |
1 2 3 4 5 80 81 83 82 85 84 218
|
rlocmulval |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 ( 𝑐 · 𝑎 ) , ( 𝑑 · 𝑏 ) 〉 ] ∼ ) |
364 |
362 219 363
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑐 , 𝑑 〉 ] ∼ ) = ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ) |
365 |
78 77
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑦 ( .r ‘ 𝐿 ) 𝑥 ) = ( [ 〈 𝑐 , 𝑑 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ) |
366 |
364 217 365
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑑 ∈ 𝑆 ) ∧ 𝑦 = [ 〈 𝑐 , 𝑑 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐿 ) 𝑥 ) ) |
367 |
366 103
|
r19.29vva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐿 ) 𝑥 ) ) |
368 |
367 106
|
r19.29vva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐿 ) 𝑥 ) ) |
369 |
368
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝑦 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) → ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐿 ) 𝑥 ) ) |
370 |
15 16 17 216 228 249 291 337 341 350 358 369
|
iscrngd |
⊢ ( 𝜑 → 𝐿 ∈ CRing ) |