Metamath Proof Explorer


Theorem rlocf1

Description: The embedding F of a ring R into its localization L . (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocf1.1 𝐵 = ( Base ‘ 𝑅 )
rlocf1.2 1 = ( 1r𝑅 )
rlocf1.3 𝐿 = ( 𝑅 RLocal 𝑆 )
rlocf1.4 = ( 𝑅 ~RL 𝑆 )
rlocf1.5 𝐹 = ( 𝑥𝐵 ↦ [ ⟨ 𝑥 , 1 ⟩ ] )
rlocf1.6 ( 𝜑𝑅 ∈ CRing )
rlocf1.7 ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
rlocf1.8 ( 𝜑𝑆 ⊆ ( RLReg ‘ 𝑅 ) )
Assertion rlocf1 ( 𝜑 → ( 𝐹 : 𝐵1-1→ ( ( 𝐵 × 𝑆 ) / ) ∧ 𝐹 ∈ ( 𝑅 RingHom 𝐿 ) ) )

Proof

Step Hyp Ref Expression
1 rlocf1.1 𝐵 = ( Base ‘ 𝑅 )
2 rlocf1.2 1 = ( 1r𝑅 )
3 rlocf1.3 𝐿 = ( 𝑅 RLocal 𝑆 )
4 rlocf1.4 = ( 𝑅 ~RL 𝑆 )
5 rlocf1.5 𝐹 = ( 𝑥𝐵 ↦ [ ⟨ 𝑥 , 1 ⟩ ] )
6 rlocf1.6 ( 𝜑𝑅 ∈ CRing )
7 rlocf1.7 ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
8 rlocf1.8 ( 𝜑𝑆 ⊆ ( RLReg ‘ 𝑅 ) )
9 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
10 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
11 10 2 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
12 11 subm0cl ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 1𝑆 )
13 7 12 syl ( 𝜑1𝑆 )
14 13 adantr ( ( 𝜑𝑥𝐵 ) → 1𝑆 )
15 9 14 opelxpd ( ( 𝜑𝑥𝐵 ) → ⟨ 𝑥 , 1 ⟩ ∈ ( 𝐵 × 𝑆 ) )
16 4 ovexi ∈ V
17 16 ecelqsi ( ⟨ 𝑥 , 1 ⟩ ∈ ( 𝐵 × 𝑆 ) → [ ⟨ 𝑥 , 1 ⟩ ] ∈ ( ( 𝐵 × 𝑆 ) / ) )
18 15 17 syl ( ( 𝜑𝑥𝐵 ) → [ ⟨ 𝑥 , 1 ⟩ ] ∈ ( ( 𝐵 × 𝑆 ) / ) )
19 18 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 [ ⟨ 𝑥 , 1 ⟩ ] ∈ ( ( 𝐵 × 𝑆 ) / ) )
20 6 crnggrpd ( 𝜑𝑅 ∈ Grp )
21 20 ad5antr ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑅 ∈ Grp )
22 simp-5r ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑥𝐵 )
23 simp-4r ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑦𝐵 )
24 vex 𝑥 ∈ V
25 2 fvexi 1 ∈ V
26 24 25 op1st ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) = 𝑥
27 26 a1i ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) = 𝑥 )
28 vex 𝑦 ∈ V
29 28 25 op2nd ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) = 1
30 29 a1i ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) = 1 )
31 27 30 oveq12d ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) = ( 𝑥 ( .r𝑅 ) 1 ) )
32 eqid ( .r𝑅 ) = ( .r𝑅 )
33 6 crngringd ( 𝜑𝑅 ∈ Ring )
34 33 ad5antr ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑅 ∈ Ring )
35 1 32 2 34 22 ringridmd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑥 ( .r𝑅 ) 1 ) = 𝑥 )
36 31 35 eqtrd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) = 𝑥 )
37 28 25 op1st ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) = 𝑦
38 37 a1i ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) = 𝑦 )
39 24 25 op2nd ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) = 1
40 39 a1i ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) = 1 )
41 38 40 oveq12d ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) = ( 𝑦 ( .r𝑅 ) 1 ) )
42 1 32 2 34 23 ringridmd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑦 ( .r𝑅 ) 1 ) = 𝑦 )
43 41 42 eqtrd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) = 𝑦 )
44 36 43 oveq12d ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) = ( 𝑥 ( -g𝑅 ) 𝑦 ) )
45 8 ad5antr ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑆 ⊆ ( RLReg ‘ 𝑅 ) )
46 simplr ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑡𝑆 )
47 45 46 sseldd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑡 ∈ ( RLReg ‘ 𝑅 ) )
48 27 22 eqeltrd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ∈ 𝐵 )
49 10 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
50 49 submss ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆𝐵 )
51 7 50 syl ( 𝜑𝑆𝐵 )
52 51 13 sseldd ( 𝜑1𝐵 )
53 52 ad5antr ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 1𝐵 )
54 30 53 eqeltrd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ∈ 𝐵 )
55 1 32 34 48 54 ringcld ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ∈ 𝐵 )
56 38 23 eqeltrd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ∈ 𝐵 )
57 40 53 eqeltrd ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ∈ 𝐵 )
58 1 32 34 56 57 ringcld ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ∈ 𝐵 )
59 eqid ( -g𝑅 ) = ( -g𝑅 )
60 1 59 grpsubcl ( ( 𝑅 ∈ Grp ∧ ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ∈ 𝐵 ∧ ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ∈ 𝐵 ) → ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ∈ 𝐵 )
61 21 55 58 60 syl3anc ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ∈ 𝐵 )
62 simpr ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) )
63 eqid ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 )
64 eqid ( 0g𝑅 ) = ( 0g𝑅 )
65 63 1 32 64 rrgeq0i ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ∈ 𝐵 ) → ( ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) → ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) = ( 0g𝑅 ) ) )
66 65 imp ( ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ∈ 𝐵 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) = ( 0g𝑅 ) )
67 47 61 62 66 syl21anc ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) = ( 0g𝑅 ) )
68 44 67 eqtr3d ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑥 ( -g𝑅 ) 𝑦 ) = ( 0g𝑅 ) )
69 1 64 59 grpsubeq0 ( ( 𝑅 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 ( -g𝑅 ) 𝑦 ) = ( 0g𝑅 ) ↔ 𝑥 = 𝑦 ) )
70 69 biimpa ( ( ( 𝑅 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) ∧ ( 𝑥 ( -g𝑅 ) 𝑦 ) = ( 0g𝑅 ) ) → 𝑥 = 𝑦 )
71 21 22 23 68 70 syl31anc ( ( ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) ) → 𝑥 = 𝑦 )
72 51 ad3antrrr ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) → 𝑆𝐵 )
73 eqid ( 𝐵 × 𝑆 ) = ( 𝐵 × 𝑆 )
74 6 ad2antrr ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → 𝑅 ∈ CRing )
75 7 ad2antrr ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
76 1 64 2 32 59 73 4 74 75 erler ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → Er ( 𝐵 × 𝑆 ) )
77 15 adantr ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → ⟨ 𝑥 , 1 ⟩ ∈ ( 𝐵 × 𝑆 ) )
78 76 77 erth ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( ⟨ 𝑥 , 1𝑦 , 1 ⟩ ↔ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) )
79 78 biimpar ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) → ⟨ 𝑥 , 1𝑦 , 1 ⟩ )
80 1 4 72 64 32 59 79 erldi ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) → ∃ 𝑡𝑆 ( 𝑡 ( .r𝑅 ) ( ( ( 1st ‘ ⟨ 𝑥 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑦 , 1 ⟩ ) ) ( -g𝑅 ) ( ( 1st ‘ ⟨ 𝑦 , 1 ⟩ ) ( .r𝑅 ) ( 2nd ‘ ⟨ 𝑥 , 1 ⟩ ) ) ) ) = ( 0g𝑅 ) )
81 71 80 r19.29a ( ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) ∧ [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] ) → 𝑥 = 𝑦 )
82 81 ex ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] 𝑥 = 𝑦 ) )
83 82 anasss ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] 𝑥 = 𝑦 ) )
84 83 ralrimivva ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] 𝑥 = 𝑦 ) )
85 opeq1 ( 𝑥 = 𝑦 → ⟨ 𝑥 , 1 ⟩ = ⟨ 𝑦 , 1 ⟩ )
86 85 eceq1d ( 𝑥 = 𝑦 → [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] )
87 5 86 f1mpt ( 𝐹 : 𝐵1-1→ ( ( 𝐵 × 𝑆 ) / ) ↔ ( ∀ 𝑥𝐵 [ ⟨ 𝑥 , 1 ⟩ ] ∈ ( ( 𝐵 × 𝑆 ) / ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑦 , 1 ⟩ ] 𝑥 = 𝑦 ) ) )
88 19 84 87 sylanbrc ( 𝜑𝐹 : 𝐵1-1→ ( ( 𝐵 × 𝑆 ) / ) )
89 eqid ( 1r𝐿 ) = ( 1r𝐿 )
90 eqid ( .r𝐿 ) = ( .r𝐿 )
91 eqid ( +g𝑅 ) = ( +g𝑅 )
92 1 32 91 3 4 6 7 rloccring ( 𝜑𝐿 ∈ CRing )
93 92 crngringd ( 𝜑𝐿 ∈ Ring )
94 opeq1 ( 𝑥 = 1 → ⟨ 𝑥 , 1 ⟩ = ⟨ 1 , 1 ⟩ )
95 94 eceq1d ( 𝑥 = 1 → [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 1 , 1 ⟩ ] )
96 eqid [ ⟨ 1 , 1 ⟩ ] = [ ⟨ 1 , 1 ⟩ ]
97 64 2 3 4 6 7 96 rloc1r ( 𝜑 → [ ⟨ 1 , 1 ⟩ ] = ( 1r𝐿 ) )
98 95 97 sylan9eqr ( ( 𝜑𝑥 = 1 ) → [ ⟨ 𝑥 , 1 ⟩ ] = ( 1r𝐿 ) )
99 fvexd ( 𝜑 → ( 1r𝐿 ) ∈ V )
100 5 98 52 99 fvmptd2 ( 𝜑 → ( 𝐹1 ) = ( 1r𝐿 ) )
101 33 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 𝑅 ∈ Ring )
102 52 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 1𝐵 )
103 1 32 2 101 102 ringlidmd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 1 ( .r𝑅 ) 1 ) = 1 )
104 103 eqcomd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 1 = ( 1 ( .r𝑅 ) 1 ) )
105 104 opeq2d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ = ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , ( 1 ( .r𝑅 ) 1 ) ⟩ )
106 105 eceq1d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ ] = [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , ( 1 ( .r𝑅 ) 1 ) ⟩ ] )
107 6 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 𝑅 ∈ CRing )
108 7 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
109 simplr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 𝑎𝐵 )
110 simpr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 𝑏𝐵 )
111 108 12 syl ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 1𝑆 )
112 1 32 91 3 4 107 108 109 110 111 111 90 rlocmulval ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( [ ⟨ 𝑎 , 1 ⟩ ] ( .r𝐿 ) [ ⟨ 𝑏 , 1 ⟩ ] ) = [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , ( 1 ( .r𝑅 ) 1 ) ⟩ ] )
113 106 112 eqtr4d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ ] = ( [ ⟨ 𝑎 , 1 ⟩ ] ( .r𝐿 ) [ ⟨ 𝑏 , 1 ⟩ ] ) )
114 opeq1 ( 𝑥 = ( 𝑎 ( .r𝑅 ) 𝑏 ) → ⟨ 𝑥 , 1 ⟩ = ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ )
115 114 eceq1d ( 𝑥 = ( 𝑎 ( .r𝑅 ) 𝑏 ) → [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ ] )
116 1 32 101 109 110 ringcld ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ 𝐵 )
117 ecexg ( ∈ V → [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ ] ∈ V )
118 16 117 mp1i ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ ] ∈ V )
119 5 115 116 118 fvmptd3 ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( .r𝑅 ) 𝑏 ) ) = [ ⟨ ( 𝑎 ( .r𝑅 ) 𝑏 ) , 1 ⟩ ] )
120 opeq1 ( 𝑥 = 𝑎 → ⟨ 𝑥 , 1 ⟩ = ⟨ 𝑎 , 1 ⟩ )
121 120 eceq1d ( 𝑥 = 𝑎 → [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑎 , 1 ⟩ ] )
122 ecexg ( ∈ V → [ ⟨ 𝑎 , 1 ⟩ ] ∈ V )
123 16 122 mp1i ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ 𝑎 , 1 ⟩ ] ∈ V )
124 5 121 109 123 fvmptd3 ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝐹𝑎 ) = [ ⟨ 𝑎 , 1 ⟩ ] )
125 opeq1 ( 𝑥 = 𝑏 → ⟨ 𝑥 , 1 ⟩ = ⟨ 𝑏 , 1 ⟩ )
126 125 eceq1d ( 𝑥 = 𝑏 → [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ 𝑏 , 1 ⟩ ] )
127 ecexg ( ∈ V → [ ⟨ 𝑏 , 1 ⟩ ] ∈ V )
128 16 127 mp1i ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ 𝑏 , 1 ⟩ ] ∈ V )
129 5 126 110 128 fvmptd3 ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝐹𝑏 ) = [ ⟨ 𝑏 , 1 ⟩ ] )
130 124 129 oveq12d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( ( 𝐹𝑎 ) ( .r𝐿 ) ( 𝐹𝑏 ) ) = ( [ ⟨ 𝑎 , 1 ⟩ ] ( .r𝐿 ) [ ⟨ 𝑏 , 1 ⟩ ] ) )
131 113 119 130 3eqtr4d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( .r𝑅 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( .r𝐿 ) ( 𝐹𝑏 ) ) )
132 131 anasss ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( .r𝑅 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( .r𝐿 ) ( 𝐹𝑏 ) ) )
133 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
134 eqid ( +g𝐿 ) = ( +g𝐿 )
135 18 5 fmptd ( 𝜑𝐹 : 𝐵 ⟶ ( ( 𝐵 × 𝑆 ) / ) )
136 1 64 32 59 73 3 4 6 51 rlocbas ( 𝜑 → ( ( 𝐵 × 𝑆 ) / ) = ( Base ‘ 𝐿 ) )
137 136 feq3d ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( ( 𝐵 × 𝑆 ) / ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐿 ) ) )
138 135 137 mpbid ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ 𝐿 ) )
139 1 32 2 101 109 ringridmd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝑎 ( .r𝑅 ) 1 ) = 𝑎 )
140 1 32 2 101 110 ringridmd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝑏 ( .r𝑅 ) 1 ) = 𝑏 )
141 139 140 oveq12d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( ( 𝑎 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 𝑏 ( .r𝑅 ) 1 ) ) = ( 𝑎 ( +g𝑅 ) 𝑏 ) )
142 141 eqcomd ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝑎 ( +g𝑅 ) 𝑏 ) = ( ( 𝑎 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 𝑏 ( .r𝑅 ) 1 ) ) )
143 142 104 opeq12d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ = ⟨ ( ( 𝑎 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 𝑏 ( .r𝑅 ) 1 ) ) , ( 1 ( .r𝑅 ) 1 ) ⟩ )
144 143 eceq1d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ ] = [ ⟨ ( ( 𝑎 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 𝑏 ( .r𝑅 ) 1 ) ) , ( 1 ( .r𝑅 ) 1 ) ⟩ ] )
145 1 32 91 3 4 107 108 109 110 111 111 134 rlocaddval ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( [ ⟨ 𝑎 , 1 ⟩ ] ( +g𝐿 ) [ ⟨ 𝑏 , 1 ⟩ ] ) = [ ⟨ ( ( 𝑎 ( .r𝑅 ) 1 ) ( +g𝑅 ) ( 𝑏 ( .r𝑅 ) 1 ) ) , ( 1 ( .r𝑅 ) 1 ) ⟩ ] )
146 144 145 eqtr4d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ ] = ( [ ⟨ 𝑎 , 1 ⟩ ] ( +g𝐿 ) [ ⟨ 𝑏 , 1 ⟩ ] ) )
147 opeq1 ( 𝑥 = ( 𝑎 ( +g𝑅 ) 𝑏 ) → ⟨ 𝑥 , 1 ⟩ = ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ )
148 147 eceq1d ( 𝑥 = ( 𝑎 ( +g𝑅 ) 𝑏 ) → [ ⟨ 𝑥 , 1 ⟩ ] = [ ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ ] )
149 20 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → 𝑅 ∈ Grp )
150 1 91 149 109 110 grpcld ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝑎 ( +g𝑅 ) 𝑏 ) ∈ 𝐵 )
151 ecexg ( ∈ V → [ ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ ] ∈ V )
152 16 151 mp1i ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → [ ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ ] ∈ V )
153 5 148 150 152 fvmptd3 ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = [ ⟨ ( 𝑎 ( +g𝑅 ) 𝑏 ) , 1 ⟩ ] )
154 124 129 oveq12d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( ( 𝐹𝑎 ) ( +g𝐿 ) ( 𝐹𝑏 ) ) = ( [ ⟨ 𝑎 , 1 ⟩ ] ( +g𝐿 ) [ ⟨ 𝑏 , 1 ⟩ ] ) )
155 146 153 154 3eqtr4d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐿 ) ( 𝐹𝑏 ) ) )
156 155 anasss ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐿 ) ( 𝐹𝑏 ) ) )
157 1 2 89 32 90 33 93 100 132 133 91 134 138 156 isrhmd ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝐿 ) )
158 88 157 jca ( 𝜑 → ( 𝐹 : 𝐵1-1→ ( ( 𝐵 × 𝑆 ) / ) ∧ 𝐹 ∈ ( 𝑅 RingHom 𝐿 ) ) )