Step |
Hyp |
Ref |
Expression |
1 |
|
rlocf1.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rlocf1.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
rlocf1.3 |
⊢ 𝐿 = ( 𝑅 RLocal 𝑆 ) |
4 |
|
rlocf1.4 |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
5 |
|
rlocf1.5 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ [ 〈 𝑥 , 1 〉 ] ∼ ) |
6 |
|
rlocf1.6 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
rlocf1.7 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
8 |
|
rlocf1.8 |
⊢ ( 𝜑 → 𝑆 ⊆ ( RLReg ‘ 𝑅 ) ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
11 |
10 2
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
12 |
11
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 1 ∈ 𝑆 ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 1 ∈ 𝑆 ) |
15 |
9 14
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑥 , 1 〉 ∈ ( 𝐵 × 𝑆 ) ) |
16 |
4
|
ovexi |
⊢ ∼ ∈ V |
17 |
16
|
ecelqsi |
⊢ ( 〈 𝑥 , 1 〉 ∈ ( 𝐵 × 𝑆 ) → [ 〈 𝑥 , 1 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 〈 𝑥 , 1 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
19 |
18
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 [ 〈 𝑥 , 1 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
20 |
6
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
21 |
20
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
22 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝐵 ) |
23 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ 𝐵 ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
2
|
fvexi |
⊢ 1 ∈ V |
26 |
24 25
|
op1st |
⊢ ( 1st ‘ 〈 𝑥 , 1 〉 ) = 𝑥 |
27 |
26
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝑥 , 1 〉 ) = 𝑥 ) |
28 |
|
vex |
⊢ 𝑦 ∈ V |
29 |
28 25
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑦 , 1 〉 ) = 1 |
30 |
29
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝑦 , 1 〉 ) = 1 ) |
31 |
27 30
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) |
32 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
33 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
34 |
33
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
35 |
1 32 2 34 22
|
ringridmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) |
36 |
31 35
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) = 𝑥 ) |
37 |
28 25
|
op1st |
⊢ ( 1st ‘ 〈 𝑦 , 1 〉 ) = 𝑦 |
38 |
37
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝑦 , 1 〉 ) = 𝑦 ) |
39 |
24 25
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑥 , 1 〉 ) = 1 |
40 |
39
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝑥 , 1 〉 ) = 1 ) |
41 |
38 40
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) = ( 𝑦 ( .r ‘ 𝑅 ) 1 ) ) |
42 |
1 32 2 34 23
|
ringridmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 1 ) = 𝑦 ) |
43 |
41 42
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) = 𝑦 ) |
44 |
36 43
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) = ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ) |
45 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑆 ⊆ ( RLReg ‘ 𝑅 ) ) |
46 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑡 ∈ 𝑆 ) |
47 |
45 46
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) |
48 |
27 22
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝑥 , 1 〉 ) ∈ 𝐵 ) |
49 |
10 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
50 |
49
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆 ⊆ 𝐵 ) |
51 |
7 50
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
52 |
51 13
|
sseldd |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
53 |
52
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 1 ∈ 𝐵 ) |
54 |
30 53
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝑦 , 1 〉 ) ∈ 𝐵 ) |
55 |
1 32 34 48 54
|
ringcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ∈ 𝐵 ) |
56 |
38 23
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝑦 , 1 〉 ) ∈ 𝐵 ) |
57 |
40 53
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝑥 , 1 〉 ) ∈ 𝐵 ) |
58 |
1 32 34 56 57
|
ringcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ∈ 𝐵 ) |
59 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
60 |
1 59
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ∈ 𝐵 ∧ ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ∈ 𝐵 ) → ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ∈ 𝐵 ) |
61 |
21 55 58 60
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ∈ 𝐵 ) |
62 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
63 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
64 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
65 |
63 1 32 64
|
rrgeq0i |
⊢ ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ∈ 𝐵 ) → ( ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) → ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
66 |
65
|
imp |
⊢ ( ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ∈ 𝐵 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) = ( 0g ‘ 𝑅 ) ) |
67 |
47 61 62 66
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) = ( 0g ‘ 𝑅 ) ) |
68 |
44 67
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
69 |
1 64 59
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ↔ 𝑥 = 𝑦 ) ) |
70 |
69
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) → 𝑥 = 𝑦 ) |
71 |
21 22 23 68 70
|
syl31anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ∧ 𝑡 ∈ 𝑆 ) ∧ ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑥 = 𝑦 ) |
72 |
51
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) → 𝑆 ⊆ 𝐵 ) |
73 |
|
eqid |
⊢ ( 𝐵 × 𝑆 ) = ( 𝐵 × 𝑆 ) |
74 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
75 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
76 |
1 64 2 32 59 73 4 74 75
|
erler |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ∼ Er ( 𝐵 × 𝑆 ) ) |
77 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 1 〉 ∈ ( 𝐵 × 𝑆 ) ) |
78 |
76 77
|
erth |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 〈 𝑥 , 1 〉 ∼ 〈 𝑦 , 1 〉 ↔ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) ) |
79 |
78
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) → 〈 𝑥 , 1 〉 ∼ 〈 𝑦 , 1 〉 ) |
80 |
1 4 72 64 32 59 79
|
erldi |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) → ∃ 𝑡 ∈ 𝑆 ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st ‘ 〈 𝑥 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑦 , 1 〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 〈 𝑦 , 1 〉 ) ( .r ‘ 𝑅 ) ( 2nd ‘ 〈 𝑥 , 1 〉 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
81 |
71 80
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) → 𝑥 = 𝑦 ) |
82 |
81
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ → 𝑥 = 𝑦 ) ) |
83 |
82
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ → 𝑥 = 𝑦 ) ) |
84 |
83
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ → 𝑥 = 𝑦 ) ) |
85 |
|
opeq1 |
⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 1 〉 = 〈 𝑦 , 1 〉 ) |
86 |
85
|
eceq1d |
⊢ ( 𝑥 = 𝑦 → [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ ) |
87 |
5 86
|
f1mpt |
⊢ ( 𝐹 : 𝐵 –1-1→ ( ( 𝐵 × 𝑆 ) / ∼ ) ↔ ( ∀ 𝑥 ∈ 𝐵 [ 〈 𝑥 , 1 〉 ] ∼ ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑦 , 1 〉 ] ∼ → 𝑥 = 𝑦 ) ) ) |
88 |
19 84 87
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
89 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
90 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
91 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
92 |
1 32 91 3 4 6 7
|
rloccring |
⊢ ( 𝜑 → 𝐿 ∈ CRing ) |
93 |
92
|
crngringd |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
94 |
|
opeq1 |
⊢ ( 𝑥 = 1 → 〈 𝑥 , 1 〉 = 〈 1 , 1 〉 ) |
95 |
94
|
eceq1d |
⊢ ( 𝑥 = 1 → [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 1 , 1 〉 ] ∼ ) |
96 |
|
eqid |
⊢ [ 〈 1 , 1 〉 ] ∼ = [ 〈 1 , 1 〉 ] ∼ |
97 |
64 2 3 4 6 7 96
|
rloc1r |
⊢ ( 𝜑 → [ 〈 1 , 1 〉 ] ∼ = ( 1r ‘ 𝐿 ) ) |
98 |
95 97
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → [ 〈 𝑥 , 1 〉 ] ∼ = ( 1r ‘ 𝐿 ) ) |
99 |
|
fvexd |
⊢ ( 𝜑 → ( 1r ‘ 𝐿 ) ∈ V ) |
100 |
5 98 52 99
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝐿 ) ) |
101 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
102 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
103 |
1 32 2 101 102
|
ringlidmd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 1 ) = 1 ) |
104 |
103
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 1 = ( 1 ( .r ‘ 𝑅 ) 1 ) ) |
105 |
104
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 = 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ) |
106 |
105
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ = [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ ) |
107 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
108 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
109 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
110 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
111 |
108 12
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ 𝑆 ) |
112 |
1 32 91 3 4 107 108 109 110 111 111 90
|
rlocmulval |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( [ 〈 𝑎 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑏 , 1 〉 ] ∼ ) = [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ ) |
113 |
106 112
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ = ( [ 〈 𝑎 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑏 , 1 〉 ] ∼ ) ) |
114 |
|
opeq1 |
⊢ ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) → 〈 𝑥 , 1 〉 = 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 ) |
115 |
114
|
eceq1d |
⊢ ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) → [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ) |
116 |
1 32 101 109 110
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
117 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ∈ V ) |
118 |
16 117
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ∈ V ) |
119 |
5 115 116 118
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ) |
120 |
|
opeq1 |
⊢ ( 𝑥 = 𝑎 → 〈 𝑥 , 1 〉 = 〈 𝑎 , 1 〉 ) |
121 |
120
|
eceq1d |
⊢ ( 𝑥 = 𝑎 → [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑎 , 1 〉 ] ∼ ) |
122 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 𝑎 , 1 〉 ] ∼ ∈ V ) |
123 |
16 122
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 𝑎 , 1 〉 ] ∼ ∈ V ) |
124 |
5 121 109 123
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = [ 〈 𝑎 , 1 〉 ] ∼ ) |
125 |
|
opeq1 |
⊢ ( 𝑥 = 𝑏 → 〈 𝑥 , 1 〉 = 〈 𝑏 , 1 〉 ) |
126 |
125
|
eceq1d |
⊢ ( 𝑥 = 𝑏 → [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 𝑏 , 1 〉 ] ∼ ) |
127 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 𝑏 , 1 〉 ] ∼ ∈ V ) |
128 |
16 127
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 𝑏 , 1 〉 ] ∼ ∈ V ) |
129 |
5 126 110 128
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) = [ 〈 𝑏 , 1 〉 ] ∼ ) |
130 |
124 129
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) = ( [ 〈 𝑎 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑏 , 1 〉 ] ∼ ) ) |
131 |
113 119 130
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) |
132 |
131
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) |
133 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
134 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
135 |
18 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
136 |
1 64 32 59 73 3 4 6 51
|
rlocbas |
⊢ ( 𝜑 → ( ( 𝐵 × 𝑆 ) / ∼ ) = ( Base ‘ 𝐿 ) ) |
137 |
136
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( ( 𝐵 × 𝑆 ) / ∼ ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐿 ) ) ) |
138 |
135 137
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐿 ) ) |
139 |
1 32 2 101 109
|
ringridmd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) = 𝑎 ) |
140 |
1 32 2 101 110
|
ringridmd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( .r ‘ 𝑅 ) 1 ) = 𝑏 ) |
141 |
139 140
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
142 |
141
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 1 ) ) ) |
143 |
142 104
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 = 〈 ( ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ) |
144 |
143
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ = [ 〈 ( ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ ) |
145 |
1 32 91 3 4 107 108 109 110 111 111 134
|
rlocaddval |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( [ 〈 𝑎 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑏 , 1 〉 ] ∼ ) = [ 〈 ( ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ ) |
146 |
144 145
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ = ( [ 〈 𝑎 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑏 , 1 〉 ] ∼ ) ) |
147 |
|
opeq1 |
⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) → 〈 𝑥 , 1 〉 = 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 ) |
148 |
147
|
eceq1d |
⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) → [ 〈 𝑥 , 1 〉 ] ∼ = [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ) |
149 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
150 |
1 91 149 109 110
|
grpcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
151 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ∈ V ) |
152 |
16 151
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ∈ V ) |
153 |
5 148 150 152
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) , 1 〉 ] ∼ ) |
154 |
124 129
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) = ( [ 〈 𝑎 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 𝑏 , 1 〉 ] ∼ ) ) |
155 |
146 153 154
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) |
156 |
155
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) |
157 |
1 2 89 32 90 33 93 100 132 133 91 134 138 156
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝐿 ) ) |
158 |
88 157
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ ( ( 𝐵 × 𝑆 ) / ∼ ) ∧ 𝐹 ∈ ( 𝑅 RingHom 𝐿 ) ) ) |