Metamath Proof Explorer


Theorem rlocval

Description: Expand the value of the ring localization operation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocval.1 𝐵 = ( Base ‘ 𝑅 )
rlocval.2 0 = ( 0g𝑅 )
rlocval.3 · = ( .r𝑅 )
rlocval.4 = ( -g𝑅 )
rlocval.5 + = ( +g𝑅 )
rlocval.6 = ( le ‘ 𝑅 )
rlocval.7 𝐹 = ( Scalar ‘ 𝑅 )
rlocval.8 𝐾 = ( Base ‘ 𝐹 )
rlocval.9 𝐶 = ( ·𝑠𝑅 )
rlocval.10 𝑊 = ( 𝐵 × 𝑆 )
rlocval.11 = ( 𝑅 ~RL 𝑆 )
rlocval.12 𝐽 = ( TopSet ‘ 𝑅 )
rlocval.13 𝐷 = ( dist ‘ 𝑅 )
rlocval.14 = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
rlocval.15 = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
rlocval.16 × = ( 𝑘𝐾 , 𝑎𝑊 ↦ ⟨ ( 𝑘 𝐶 ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ )
rlocval.17 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) }
rlocval.18 𝐸 = ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) 𝐷 ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
rlocval.19 ( 𝜑𝑅𝑉 )
rlocval.20 ( 𝜑𝑆𝐵 )
Assertion rlocval ( 𝜑 → ( 𝑅 RLocal 𝑆 ) = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) )

Proof

Step Hyp Ref Expression
1 rlocval.1 𝐵 = ( Base ‘ 𝑅 )
2 rlocval.2 0 = ( 0g𝑅 )
3 rlocval.3 · = ( .r𝑅 )
4 rlocval.4 = ( -g𝑅 )
5 rlocval.5 + = ( +g𝑅 )
6 rlocval.6 = ( le ‘ 𝑅 )
7 rlocval.7 𝐹 = ( Scalar ‘ 𝑅 )
8 rlocval.8 𝐾 = ( Base ‘ 𝐹 )
9 rlocval.9 𝐶 = ( ·𝑠𝑅 )
10 rlocval.10 𝑊 = ( 𝐵 × 𝑆 )
11 rlocval.11 = ( 𝑅 ~RL 𝑆 )
12 rlocval.12 𝐽 = ( TopSet ‘ 𝑅 )
13 rlocval.13 𝐷 = ( dist ‘ 𝑅 )
14 rlocval.14 = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
15 rlocval.15 = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
16 rlocval.16 × = ( 𝑘𝐾 , 𝑎𝑊 ↦ ⟨ ( 𝑘 𝐶 ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ )
17 rlocval.17 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) }
18 rlocval.18 𝐸 = ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) 𝐷 ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
19 rlocval.19 ( 𝜑𝑅𝑉 )
20 rlocval.20 ( 𝜑𝑆𝐵 )
21 19 elexd ( 𝜑𝑅 ∈ V )
22 1 fvexi 𝐵 ∈ V
23 22 a1i ( 𝜑𝐵 ∈ V )
24 23 20 ssexd ( 𝜑𝑆 ∈ V )
25 ovexd ( 𝜑 → ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) ∈ V )
26 fvexd ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) ∈ V )
27 fveq2 ( 𝑟 = 𝑅 → ( .r𝑟 ) = ( .r𝑅 ) )
28 27 adantr ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) = ( .r𝑅 ) )
29 28 3 eqtr4di ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) = · )
30 fvexd ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) ∈ V )
31 vex 𝑠 ∈ V
32 31 a1i ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → 𝑠 ∈ V )
33 30 32 xpexd ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) ∈ V )
34 fveq2 ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
35 34 ad2antrr ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
36 35 1 eqtr4di ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) = 𝐵 )
37 simplr ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → 𝑠 = 𝑆 )
38 36 37 xpeq12d ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) = ( 𝐵 × 𝑆 ) )
39 38 10 eqtr4di ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) = 𝑊 )
40 simpr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑤 = 𝑊 )
41 40 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ = ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ )
42 simplll ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑟 = 𝑅 )
43 42 fveq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( +g𝑟 ) = ( +g𝑅 ) )
44 43 5 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( +g𝑟 ) = + )
45 simplr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑥 = · )
46 45 oveqd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) = ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) )
47 45 oveqd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) = ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) )
48 44 46 47 oveq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
49 45 oveqd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) = ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) )
50 48 49 opeq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ = ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
51 40 40 50 mpoeq123dv ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) + ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) )
52 51 14 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) = )
53 52 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ = ⟨ ( +g ‘ ndx ) , ⟩ )
54 45 oveqd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) = ( ( 1st𝑎 ) · ( 1st𝑏 ) ) )
55 54 49 opeq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ = ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ )
56 40 40 55 mpoeq123dv ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) = ( 𝑎𝑊 , 𝑏𝑊 ↦ ⟨ ( ( 1st𝑎 ) · ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) · ( 2nd𝑏 ) ) ⟩ ) )
57 56 15 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) = )
58 57 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ = ⟨ ( .r ‘ ndx ) , ⟩ )
59 41 53 58 tpeq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } )
60 42 fveq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Scalar ‘ 𝑟 ) = ( Scalar ‘ 𝑅 ) )
61 60 7 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Scalar ‘ 𝑟 ) = 𝐹 )
62 61 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ = ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ )
63 60 fveq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) )
64 7 fveq2i ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑅 ) )
65 8 64 eqtri 𝐾 = ( Base ‘ ( Scalar ‘ 𝑅 ) )
66 63 65 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = 𝐾 )
67 42 fveq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ·𝑠𝑟 ) = ( ·𝑠𝑅 ) )
68 67 9 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ·𝑠𝑟 ) = 𝐶 )
69 68 oveqd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) = ( 𝑘 𝐶 ( 1st𝑎 ) ) )
70 69 opeq1d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ = ⟨ ( 𝑘 𝐶 ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ )
71 66 40 70 mpoeq123dv ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) = ( 𝑘𝐾 , 𝑎𝑊 ↦ ⟨ ( 𝑘 𝐶 ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) )
72 71 16 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) = × )
73 72 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ = ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ )
74 eqidd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ = ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ )
75 62 73 74 tpeq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } = { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } )
76 59 75 uneq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) )
77 42 fveq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( TopSet ‘ 𝑟 ) = ( TopSet ‘ 𝑅 ) )
78 77 12 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( TopSet ‘ 𝑟 ) = 𝐽 )
79 37 adantr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑠 = 𝑆 )
80 78 79 oveq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) = ( 𝐽t 𝑆 ) )
81 78 80 oveq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) = ( 𝐽 ×t ( 𝐽t 𝑆 ) ) )
82 81 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ = ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ )
83 40 eleq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤𝑎𝑊 ) )
84 40 eleq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑏𝑤𝑏𝑊 ) )
85 83 84 anbi12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 𝑎𝑤𝑏𝑤 ) ↔ ( 𝑎𝑊𝑏𝑊 ) ) )
86 42 fveq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( le ‘ 𝑟 ) = ( le ‘ 𝑅 ) )
87 86 6 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( le ‘ 𝑟 ) = )
88 46 87 47 breq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ↔ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
89 85 88 anbi12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ↔ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) )
90 89 opabbidv ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) } )
91 90 17 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } = )
92 91 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ = ⟨ ( le ‘ ndx ) , ⟩ )
93 42 fveq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( dist ‘ 𝑟 ) = ( dist ‘ 𝑅 ) )
94 93 13 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( dist ‘ 𝑟 ) = 𝐷 )
95 94 46 47 oveq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) 𝐷 ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
96 40 40 95 mpoeq123dv ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 𝑎𝑊 , 𝑏𝑊 ↦ ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) 𝐷 ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) )
97 96 18 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = 𝐸 )
98 97 opeq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ = ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ )
99 82 92 98 tpeq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } = { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } )
100 76 99 uneq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) )
101 42 79 oveq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑟 ~RL 𝑠 ) = ( 𝑅 ~RL 𝑆 ) )
102 101 11 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑟 ~RL 𝑠 ) = )
103 100 102 oveq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) ) = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) )
104 33 39 103 csbied2 ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) ) = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) )
105 26 29 104 csbied2 ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) ) = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) )
106 df-rloc RLocal = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) ) )
107 105 106 ovmpoga ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ∧ ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) ∈ V ) → ( 𝑅 RLocal 𝑆 ) = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) )
108 21 24 25 107 syl3anc ( 𝜑 → ( 𝑅 RLocal 𝑆 ) = ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑊 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , × ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽t 𝑆 ) ) ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐸 ⟩ } ) /s ) )