Step |
Hyp |
Ref |
Expression |
1 |
|
rlocval.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rlocval.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
rlocval.3 |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
rlocval.4 |
⊢ − = ( -g ‘ 𝑅 ) |
5 |
|
rlocval.5 |
⊢ + = ( +g ‘ 𝑅 ) |
6 |
|
rlocval.6 |
⊢ ≤ = ( le ‘ 𝑅 ) |
7 |
|
rlocval.7 |
⊢ 𝐹 = ( Scalar ‘ 𝑅 ) |
8 |
|
rlocval.8 |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
9 |
|
rlocval.9 |
⊢ 𝐶 = ( ·𝑠 ‘ 𝑅 ) |
10 |
|
rlocval.10 |
⊢ 𝑊 = ( 𝐵 × 𝑆 ) |
11 |
|
rlocval.11 |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
12 |
|
rlocval.12 |
⊢ 𝐽 = ( TopSet ‘ 𝑅 ) |
13 |
|
rlocval.13 |
⊢ 𝐷 = ( dist ‘ 𝑅 ) |
14 |
|
rlocval.14 |
⊢ ⊕ = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) + ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) |
15 |
|
rlocval.15 |
⊢ ⊗ = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) |
16 |
|
rlocval.16 |
⊢ × = ( 𝑘 ∈ 𝐾 , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 𝐶 ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) |
17 |
|
rlocval.17 |
⊢ ≲ = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ≤ ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } |
18 |
|
rlocval.18 |
⊢ 𝐸 = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 𝐷 ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) |
19 |
|
rlocval.19 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
20 |
|
rlocval.20 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
21 |
19
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
22 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
23 |
22
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
24 |
23 20
|
ssexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
25 |
|
ovexd |
⊢ ( 𝜑 → ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) /s ∼ ) ∈ V ) |
26 |
|
fvexd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( .r ‘ 𝑟 ) ∈ V ) |
27 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
29 |
28 3
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( .r ‘ 𝑟 ) = · ) |
30 |
|
fvexd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) ∈ V ) |
31 |
|
vex |
⊢ 𝑠 ∈ V |
32 |
31
|
a1i |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → 𝑠 ∈ V ) |
33 |
30 32
|
xpexd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) ∈ V ) |
34 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
36 |
35 1
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) = 𝐵 ) |
37 |
|
simplr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → 𝑠 = 𝑆 ) |
38 |
36 37
|
xpeq12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) = ( 𝐵 × 𝑆 ) ) |
39 |
38 10
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) = 𝑊 ) |
40 |
|
simpr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑤 = 𝑊 ) |
41 |
40
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( Base ‘ ndx ) , 𝑤 〉 = 〈 ( Base ‘ ndx ) , 𝑊 〉 ) |
42 |
|
simplll |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑟 = 𝑅 ) |
43 |
42
|
fveq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
44 |
43 5
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( +g ‘ 𝑟 ) = + ) |
45 |
|
simplr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑥 = · ) |
46 |
45
|
oveqd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) = ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ) |
47 |
45
|
oveqd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) |
48 |
44 46 47
|
oveq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) = ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) + ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) |
49 |
45
|
oveqd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) = ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ) |
50 |
48 49
|
opeq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 = 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) + ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) |
51 |
40 40 50
|
mpoeq123dv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) + ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) ) |
52 |
51 14
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) = ⊕ ) |
53 |
52
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 = 〈 ( +g ‘ ndx ) , ⊕ 〉 ) |
54 |
45
|
oveqd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) = ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) ) |
55 |
54 49
|
opeq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 = 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) |
56 |
40 40 55
|
mpoeq123dv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ 〈 ( ( 1st ‘ 𝑎 ) · ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 〉 ) ) |
57 |
56 15
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) = ⊗ ) |
58 |
57
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 = 〈 ( .r ‘ ndx ) , ⊗ 〉 ) |
59 |
41 53 58
|
tpeq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ) |
60 |
42
|
fveq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Scalar ‘ 𝑟 ) = ( Scalar ‘ 𝑅 ) ) |
61 |
60 7
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Scalar ‘ 𝑟 ) = 𝐹 ) |
62 |
61
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝐹 〉 ) |
63 |
60
|
fveq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) ) |
64 |
7
|
fveq2i |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) |
65 |
8 64
|
eqtri |
⊢ 𝐾 = ( Base ‘ ( Scalar ‘ 𝑅 ) ) |
66 |
63 65
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = 𝐾 ) |
67 |
42
|
fveq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ·𝑠 ‘ 𝑟 ) = ( ·𝑠 ‘ 𝑅 ) ) |
68 |
67 9
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ·𝑠 ‘ 𝑟 ) = 𝐶 ) |
69 |
68
|
oveqd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) = ( 𝑘 𝐶 ( 1st ‘ 𝑎 ) ) ) |
70 |
69
|
opeq1d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 = 〈 ( 𝑘 𝐶 ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) |
71 |
66 40 70
|
mpoeq123dv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) = ( 𝑘 ∈ 𝐾 , 𝑎 ∈ 𝑊 ↦ 〈 ( 𝑘 𝐶 ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) ) |
72 |
71 16
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) = × ) |
73 |
72
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , × 〉 ) |
74 |
|
eqidd |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 = 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 ) |
75 |
62 73 74
|
tpeq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } = { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) |
76 |
59 75
|
uneq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ) |
77 |
42
|
fveq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( TopSet ‘ 𝑟 ) = ( TopSet ‘ 𝑅 ) ) |
78 |
77 12
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( TopSet ‘ 𝑟 ) = 𝐽 ) |
79 |
37
|
adantr |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑠 = 𝑆 ) |
80 |
78 79
|
oveq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) = ( 𝐽 ↾t 𝑆 ) ) |
81 |
78 80
|
oveq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) = ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) ) |
82 |
81
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 = 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 ) |
83 |
40
|
eleq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎 ∈ 𝑤 ↔ 𝑎 ∈ 𝑊 ) ) |
84 |
40
|
eleq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑏 ∈ 𝑤 ↔ 𝑏 ∈ 𝑊 ) ) |
85 |
83 84
|
anbi12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ↔ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ) |
86 |
42
|
fveq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( le ‘ 𝑟 ) = ( le ‘ 𝑅 ) ) |
87 |
86 6
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( le ‘ 𝑟 ) = ≤ ) |
88 |
46 87 47
|
breq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ↔ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ≤ ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) |
89 |
85 88
|
anbi12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ↔ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ≤ ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) ) |
90 |
89
|
opabbidv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ∧ ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ≤ ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) } ) |
91 |
90 17
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } = ≲ ) |
92 |
91
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 = 〈 ( le ‘ ndx ) , ≲ 〉 ) |
93 |
42
|
fveq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( dist ‘ 𝑟 ) = ( dist ‘ 𝑅 ) ) |
94 |
93 13
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( dist ‘ 𝑟 ) = 𝐷 ) |
95 |
94 46 47
|
oveq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) = ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 𝐷 ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) |
96 |
40 40 95
|
mpoeq123dv |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) = ( 𝑎 ∈ 𝑊 , 𝑏 ∈ 𝑊 ↦ ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) 𝐷 ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) ) |
97 |
96 18
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) = 𝐸 ) |
98 |
97
|
opeq2d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 = 〈 ( dist ‘ ndx ) , 𝐸 〉 ) |
99 |
82 92 98
|
tpeq123d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } = { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) |
100 |
76 99
|
uneq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) ) |
101 |
42 79
|
oveq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑟 ~RL 𝑠 ) = ( 𝑅 ~RL 𝑆 ) ) |
102 |
101 11
|
eqtr4di |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑟 ~RL 𝑠 ) = ∼ ) |
103 |
100 102
|
oveq12d |
⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) = ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) /s ∼ ) ) |
104 |
33 39 103
|
csbied2 |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) = ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) /s ∼ ) ) |
105 |
26 29 104
|
csbied2 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) = ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) /s ∼ ) ) |
106 |
|
df-rloc |
⊢ RLocal = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) ) |
107 |
105 106
|
ovmpoga |
⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ∧ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) /s ∼ ) ∈ V ) → ( 𝑅 RLocal 𝑆 ) = ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) /s ∼ ) ) |
108 |
21 24 25 107
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 RLocal 𝑆 ) = ( ( ( { 〈 ( Base ‘ ndx ) , 𝑊 〉 , 〈 ( +g ‘ ndx ) , ⊕ 〉 , 〈 ( .r ‘ ndx ) , ⊗ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐹 〉 , 〈 ( ·𝑠 ‘ ndx ) , × 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( 𝐽 ×t ( 𝐽 ↾t 𝑆 ) ) 〉 , 〈 ( le ‘ ndx ) , ≲ 〉 , 〈 ( dist ‘ ndx ) , 𝐸 〉 } ) /s ∼ ) ) |