Metamath Proof Explorer


Theorem rmbaserp

Description: The base of exponentiation for the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmbaserp ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 rmspecfund ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( PellFund ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) = ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) )
2 rmspecnonsq ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ( ℕ ∖ ◻NN ) )
3 pellfundrp ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℝ+ )
4 2 3 syl ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( PellFund ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℝ+ )
5 1 4 eqeltrrd ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℝ+ )