Metamath Proof Explorer


Theorem rmo0

Description: Vacuous restricted at-most-one quantifier is always true. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion rmo0 ∃* 𝑥 ∈ ∅ 𝜑

Proof

Step Hyp Ref Expression
1 rex0 ¬ ∃ 𝑥 ∈ ∅ 𝜑
2 1 pm2.21i ( ∃ 𝑥 ∈ ∅ 𝜑 → ∃! 𝑥 ∈ ∅ 𝜑 )
3 rmo5 ( ∃* 𝑥 ∈ ∅ 𝜑 ↔ ( ∃ 𝑥 ∈ ∅ 𝜑 → ∃! 𝑥 ∈ ∅ 𝜑 ) )
4 2 3 mpbir ∃* 𝑥 ∈ ∅ 𝜑